47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      DNA polymorphisms at the BCL11A, HBS1L-MYB, and  -globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sickle cell disease (SCD) is a debilitating monogenic blood disorder with a highly variable phenotype characterized by severe pain crises, acute clinical events, and early mortality. Interindividual variation in fetal hemoglobin (HbF) expression is a known and potentially heritable modifier of SCD severity. High HbF levels are correlated with reduced morbidity and mortality. Common single nucleotide polymorphisms (SNPs) at the BCL11A and HBS1L-MYB loci have been implicated previously in HbF level variation in nonanemic European populations. We recently demonstrated an association between a BCL11A SNP and HbF levels in one SCD cohort [Uda M, et al. (2008) Proc Natl Acad Sci USA 105:1620-1625]. Here, we genotyped additional BCL11A SNPs, HBS1L-MYB SNPs, and an SNP upstream of (G)gamma-globin (HBG2; the XmnI polymorphism), in two independent SCD cohorts: the African American Cooperative Study of Sickle Cell Disease (CSSCD) and an SCD cohort from Brazil. We studied the effect of these SNPs on HbF levels and on a measure of SCD-related morbidity (pain crisis rate). We strongly replicated the association between these SNPs and HbF level variation (in the CSSCD, P values range from 0.04 to 2 x 10(-42)). Together, common SNPs at the BCL11A, HBS1L-MYB, and beta-globin (HBB) loci account for >20% of the variation in HbF levels in SCD patients. We also have shown that HbF-associated SNPs associate with pain crisis rate in SCD patients. These results provide a clear example of inherited common sequence variants modifying the severity of a monogenic disease.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          PLINK: a tool set for whole-genome association and population-based linkage analyses.

          Whole-genome association studies (WGAS) bring new computational, as well as analytic, challenges to researchers. Many existing genetic-analysis tools are not designed to handle such large data sets in a convenient manner and do not necessarily exploit the new opportunities that whole-genome data bring. To address these issues, we developed PLINK, an open-source C/C++ WGAS tool set. With PLINK, large data sets comprising hundreds of thousands of markers genotyped for thousands of individuals can be rapidly manipulated and analyzed in their entirety. As well as providing tools to make the basic analytic steps computationally efficient, PLINK also supports some novel approaches to whole-genome data that take advantage of whole-genome coverage. We introduce PLINK and describe the five main domains of function: data management, summary statistics, population stratification, association analysis, and identity-by-descent estimation. In particular, we focus on the estimation and use of identity-by-state and identity-by-descent information in the context of population-based whole-genome studies. This information can be used to detect and correct for population stratification and to identify extended chromosomal segments that are shared identical by descent between very distantly related individuals. Analysis of the patterns of segmental sharing has the potential to map disease loci that contain multiple rare variants in a population-based linkage analysis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Newly identified loci that influence lipid concentrations and risk of coronary artery disease.

            To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence variations in PCSK9, low LDL, and protection against coronary heart disease.

              A low plasma level of low-density lipoprotein (LDL) cholesterol is associated with reduced risk of coronary heart disease (CHD), but the effect of lifelong reductions in plasma LDL cholesterol is not known. We examined the effect of DNA-sequence variations that reduce plasma levels of LDL cholesterol on the incidence of coronary events in a large population. We compared the incidence of CHD (myocardial infarction, fatal CHD, or coronary revascularization) over a 15-year interval in the Atherosclerosis Risk in Communities study according to the presence or absence of sequence variants in the proprotein convertase subtilisin/kexin type 9 serine protease gene (PCSK9) that are associated with reduced plasma levels of LDL cholesterol. Of the 3363 black subjects examined, 2.6 percent had nonsense mutations in PCSK9; these mutations were associated with a 28 percent reduction in mean LDL cholesterol and an 88 percent reduction in the risk of CHD (P=0.008 for the reduction; hazard ratio, 0.11; 95 percent confidence interval, 0.02 to 0.81; P=0.03). Of the 9524 white subjects examined, 3.2 percent had a sequence variation in PCSK9 that was associated with a 15 percent reduction in LDL cholesterol and a 47 percent reduction in the risk of CHD (hazard ratio, 0.50; 95 percent confidence interval, 0.32 to 0.79; P=0.003). These data indicate that moderate lifelong reduction in the plasma level of LDL cholesterol is associated with a substantial reduction in the incidence of coronary events, even in populations with a high prevalence of non-lipid-related cardiovascular risk factors. Copyright 2006 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 19 2008
                August 19 2008
                July 30 2008
                August 19 2008
                : 105
                : 33
                : 11869-11874
                Article
                10.1073/pnas.0804799105
                2491485
                18667698
                e7b83918-9340-44c6-b201-7f43d218fa11
                © 2008
                History

                Comments

                Comment on this article