10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      IMRT, RapidArc® and conformal radiotherapy in the treatment of tumours of the anal canal

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To compare dosimetric results of the use of RapidArc® with simultaneous integrated boost, sliding window intensity-modulated radiotherapy (IMRT) with simultaneous integrated boost, and conformal radiotherapy with sequential boost in the management of anal canal cancer.

          Methods

          Two patients with squamous cell cancer of the anal canal with compromised inguinal nodes were included. The simulation was performed in the supine position with a customized Vac-Lok™ immobilizer. Treatment volumes and organs at risk were defined in accordance with international recommendations. Dosimetric comparisons were made in the target volume by means of tumour conformity, coverage, and homogeneity indexes; in healthy organs, integral doses were compared.

          Results

          A similar planning target volume coverage was achieved with the three techniques. The two IMRT techniques demonstrated benefits in doses received by healthy organs compared to the conformal radiotherapy. RapidArc® showed reduction in the execution time and monitor units required for treatment compared with sliding window IMRT.

          Conclusions

          The IMRT showed coverage and tumour conformity indexes similar to those of conformal radiotherapy with better dosimetric results in the organs at risk, which should translate into a better toxicity profile. RapidArc® demonstrated benefits over the sliding window IMRT, which makes treatment more comfortable for the patient with less uncertainty about intrafraction motion and a reduced potential for radiation-induced tumours.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Intensity-modulated radiation therapy, protons, and the risk of second cancers.

          Eric Hall (2006)
          Intensity-modulated radiation therapy (IMRT) allows dose to be concentrated in the tumor volume while sparing normal tissues. However, the downside to IMRT is the potential to increase the number of radiation-induced second cancers. The reasons for this potential are more monitor units and, therefore, a larger total-body dose because of leakage radiation and, because IMRT involves more fields, a bigger volume of normal tissue is exposed to lower radiation doses. Intensity-modulated radiation therapy may double the incidence of solid cancers in long-term survivors. This outcome may be acceptable in older patients if balanced by an improvement in local tumor control and reduced acute toxicity. On the other hand, the incidence of second cancers is much higher in children, so that doubling it may not be acceptable. IMRT represents a special case for children for three reasons. First, children are more sensitive to radiation-induced cancer than are adults. Second, radiation scattered from the treatment volume is more important in the small body of the child. Third, the question of genetic susceptibility arises because many childhood cancers involve a germline mutation. The levels of leakage radiation in current Linacs are not inevitable. Leakage can be reduced but at substantial cost. An alternative strategy is to replace X-rays with protons. However, this change is only an advantage if the proton machine employs a pencil scanning beam. Many proton facilities use passive modulation to produce a field of sufficient size, but the use of a scattering foil produces neutrons, which results in an effective dose to the patient higher than that characteristic of IMRT. The benefit of protons is only achieved if a scanning beam is used in which the doses are 10 times lower than with IMRT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fluorouracil, mitomycin, and radiotherapy vs fluorouracil, cisplatin, and radiotherapy for carcinoma of the anal canal: a randomized controlled trial.

            Chemoradiation as definitive therapy is the preferred primary therapy for patients with anal canal carcinoma; however, the 5-year disease-free survival rate from concurrent fluorouracil/mitomycin and radiation is only approximately 65%. To compare the efficacy of cisplatin-based (experimental) therapy vs mitomycin-based (standard) therapy in treatment of anal canal carcinoma. US Gastrointestinal Intergroup trial RTOG 98-11, a multicenter, phase 3, randomized controlled trial comparing treatment with fluorouracil plus mitomycin and radiotherapy vs treatment with fluorouracil plus cisplatin and radiotherapy in 682 patients with anal canal carcinoma enrolled between October 31, 1998, and June 27, 2005. Stratifications included sex, clinical nodal status, and tumor diameter. Participants were randomly assigned to 1 of 2 intervention groups: (1) the mitomycin-based group (n = 341), who received fluorouracil (1000 mg/m2 on days 1-4 and 29-32) plus mitomycin (10 mg/m2 on days 1 and 29) and radiotherapy (45-59 Gy) or (2) the cisplatin-based group (n = 341), who received fluorouracil (1000 mg/m2 on days 1-4, 29-32, 57-60, and 85-88) plus cisplatin (75 mg/m2 on days 1, 29, 57, and 85) and radiotherapy (45-59 Gy; start day = day 57). The primary end point was 5-year disease-free survival; secondary end points were overall survival and time to relapse. A total of 644 patients were assessable. The median follow-up for all patients was 2.51 years. Median age was 55 years, 69% were women, 27% had a tumor diameter greater than 5 cm, and 26% had clinically positive nodes. The 5-year disease-free survival rate was 60% (95% confidence interval [CI], 53%-67%) in the mitomycin-based group and 54% (95% CI, 46%-60%) in the cisplatin-based group (P = .17). The 5-year overall survival rate was 75% (95% CI, 67%-81%) in the mitomycin-based group and 70% (95% CI, 63%-76%) in the cisplatin-based group (P = .10). The 5-year local-regional recurrence and distant metastasis rates were 25% (95% CI, 20%-30%) and 15% (95% CI, 10%-20%), respectively, for mitomycin-based treatment and 33% (95% CI, 27%-40%) and 19% (95% CI, 14%-24%), respectively, for cisplatin-based treatment. The cumulative rate of colostomy was significantly better for mitomycin-based than cisplatin-based treatment (10% vs 19%; P = .02). Severe hematologic toxicity was worse with mitomycin-based treatment (P < .001). In this population of patients with anal canal carcinoma, cisplatin-based therapy failed to improve disease-free-survival compared with mitomycin-based therapy, but cisplatin-based therapy resulted in a significantly worse colostomy rate. These findings do not support the use of cisplatin in place of mitomycin in combination with fluorouracil and radiotherapy in the treatment of anal canal carcinoma. clinicaltrials.gov Identifier: NCT00003596.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Association between bone marrow dosimetric parameters and acute hematologic toxicity in anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy.

              To test the hypothesis that the volume of pelvic bone marrow (PBM) receiving 10 and 20 Gy or more (PBM-V(10) and PBM-V(20)) is associated with acute hematologic toxicity (HT) in anal cancer patients treated with concurrent chemoradiotherapy. We analyzed 48 consecutive anal cancer patients treated with concurrent chemotherapy and intensity-modulated radiation therapy. The median radiation dose to gross tumor and regional lymph nodes was 50.4 and 45 Gy, respectively. Pelvic bone marrow was defined as the region extending from the iliac crests to the ischial tuberosities, including the os coxae, lumbosacral spine, and proximal femora. Endpoints included the white blood cell count (WBC), absolute neutrophil count (ANC), hemoglobin, and platelet count nadirs. Regression models with multiple independent predictors were used to test associations between dosimetric parameters and HT. Twenty patients (42%) had Stage T3-4 disease; 15 patients (31%) were node positive. Overall, 27 (56%), 24 (50%), 4 (8%), and 13 (27%) experienced acute Grade 3-4 leukopenia, neutropenia, anemia, and thrombocytopenia, respectively. On multiple regression analysis, increased PBM-V(5), V(10), V(15), and V(20) were significantly associated with decreased WBC and ANC nadirs, as were female gender, decreased body mass index, and increased lumbosacral bone marrow V(10), V(15), and V(20) (p < 0.05 for each association). Lymph node positivity was significantly associated with a decreased WBC nadir on multiple regression analysis (p < 0.05). This analysis supports the hypothesis that increased low-dose radiation to PBM is associated with acute HT during chemoradiotherapy for anal cancer. Techniques to limit bone marrow irradiation may reduce HT in anal cancer patients.
                Bookmark

                Author and article information

                Journal
                Ecancermedicalscience
                Ecancermedicalscience
                ecancermedicalscience
                ecancermedicalscience
                Cancer Intelligence
                1754-6605
                2014
                06 October 2014
                : 8
                : 469
                Affiliations
                Centro de Control de Cáncer, Bogotá 110221, Colombia
                Author notes
                Correspondence to: Ricardo Cendales. acardocen@ 123456yahoo.com
                Article
                can-8-469
                10.3332/ecancer.2014.469
                4203473
                e7c31adb-63b6-4e0b-b477-0eba30a46f04
                © the authors; licensee ecancermedicalscience.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 February 2014
                Categories
                Research

                Oncology & Radiotherapy
                anus neoplasms,conformal radiotherapy,intensity-modulated radiotherapy

                Comments

                Comment on this article