14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of a semi-automated in vitro feeding system for Dermacentor reticulatus and Ixodes ricinus adults

      brief-report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The long feeding duration of ixodid ticks and need for regular blood changes turns the artificial feeding of ticks into a tedious process. To reduce the number of blood changes, a semi-automated system (SAS) for the artificial feeding of hard ticks was developed and evaluated. It consisted of a glass feeding reservoir that can accommodate six tick feeding chambers. A peristaltic pump was used to pump blood through the feeding reservoir, which was changed once daily. Groups of Dermacentor reticulatus and Ixodes ricinus adults were fed simultaneously in both the SAS and a conventional in vitro feeding system. In the conventional system, feeding chambers were hung inside a glass beaker filled with blood that was replaced twice daily. Dermacentor reticulatus adults fed in the SAS obtained significantly higher engorgement weights. Although engorgement rates between both systems were comparable, significantly more SAS-fed females laid fertile egg batches. The egg batch weight of SAS-fed females was also significantly higher. In contrast, the engorgement rate and fecundity of SAS-fed I. ricinus were significantly reduced in comparison to ticks fed in the conventional system. This reduction was likely to be caused by fungal infestation, which could spread between feeding chambers in the SAS. Although the SAS reduced the workload compared to the conventional feeding system and showed promising results for the in vitro feeding of D. reticulatus adults, measures to prevent fungal infestations in the SAS should be considered in future studies.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Gut microbiota of the tick vector Ixodes scapularis modulate colonization of the Lyme disease spirochete.

          Arthopods such as Ixodes scapularis ticks serve as vectors for many human pathogens. The arthropod gut presents a pivotal microbial entry point and determines pathogen colonization and survival. We show that the gut microbiota of I. scapularis, a major vector of the Lyme disease spirochete Borrelia burgdorferi, influence spirochete colonization of ticks. Perturbing the gut microbiota of larval ticks reduced Borrelia colonization, and dysbiosed larvae displayed decreased expression of the transcription factor signal transducer and activator of transcription (STAT). Diminished STAT expression corresponded to lower expression of peritrophin, a key glycoprotein scaffold of the glycan-rich mucus-like peritrophic matrix (PM) that separates the gut lumen from the epithelium. The integrity of the I. scapularis PM was essential for B. burgdorferi to efficiently colonize the gut epithelium. These data elucidate a functional link between the gut microbiota, STAT-signaling, and pathogen colonization in the context of the gut epithelial barrier of an arthropod vector. Copyright © 2014 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            Geographical distribution of Dermacentor marginatus and Dermacentor reticulatus in Europe.

            The goal of this paper is to present up-to-date maps depicting the geographical distribution of Dermacentor species in Europe based on georeferenced sampling sites. Therefore, a dataset was compiled, resulting in 1286 D. marginatus (Sulzer, 1776) and 1209 D. reticulatus (Fabricius, 1794) locations. Special emphasis is given to the region of the European Alps depicting a presumable climate barrier of the mountains and to overlaps in the distribution of both species as well as on the situation in eastern European countries. For the latter newly described Dermacentor findings comprise 59 locations in Romania and 62 locations in Ukraine. The geographical distributions of both species in Europe range from Portugal to Ukraine (and continue to the east of Kazakhstan). Although it is well known that D. marginatus is adapted to a warmer and drier climate at more southern latitudes and D. reticulatus to a moderately moist climate at more northern latitudes, the distribution limits of both species were not well known. Here, the northern and southern distribution limits for both species in Europe, as determined from the georeferenced database, were specified for D. marginatus by the belt of 33-51° N latitude and for D. reticulatus by the belt of 41-57° N latitude. Thus, overlapping species distributions were found between 41° N and 51° N.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An in vitro feeding assay to test acaricides for control of hard ticks.

              Animal husbandry could not be practised over large areas of the planet without acaricides. The prevention of tick bite and the transmission of diseases requires the use of pesticides, but this contributes to the development of tick resistance against acaricides. This drives the quest for new molecules that target physiological processes crucial to tick survival. In vivo trials involve multiple repetitions because of inherent variations between host animals, requiring large amounts of test products and ticks. An in vitro alternative should permit the testing of the ability of a product to restrict attachment and feeding by ticks at precise doses. In this paper an in vitro feeding system is described where the European tick Ixodes ricinus L. feeds on blood through a cellulose rayon-reinforced silicone membrane. The membrane Shore hardness is modified to imitate the elastic retraction forces of skin that ensure the closing of tick penetration sites on the membrane to prevent bleeding. Tick attachment (75-100%) is achieved by adding chemical and mechanical stimuli to the membrane. Survival curves for different doses of fipronil and ivermectin tested with the method showed highly reproducible acaricide effects within 5-7 days. Significant effects are recorded down to ppb levels in blood. Standardised tests can be made with blood from the same donor animal or culture medium under the membrane. Copyright (c) 2007 Society of Chemical Industry.
                Bookmark

                Author and article information

                Contributors
                +49 30 838 62326 , ard.nijhof@fu-berlin.de
                Journal
                Parasitol Res
                Parasitol. Res
                Parasitology Research
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0932-0113
                1432-1955
                3 January 2018
                3 January 2018
                2018
                : 117
                : 2
                : 565-570
                Affiliations
                ISNI 0000 0000 9116 4836, GRID grid.14095.39, Institute for Parasitology and Tropical Veterinary Medicine, , Freie Universität Berlin, ; Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany
                Article
                5648
                10.1007/s00436-017-5648-y
                5775380
                29297094
                e7ca9842-06a1-4f42-a366-24f79827f647
                © The Author(s) 2018

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 13 July 2017
                : 9 October 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100002347, Bundesministerium für Bildung und Forschung;
                Award ID: 031A228
                Award Recipient :
                Categories
                Short Communication
                Custom metadata
                © Springer-Verlag GmbH Germany, part of Springer Nature 2018

                Parasitology
                ixodes ricinus,dermacentor reticulatus,artificial tick feeding
                Parasitology
                ixodes ricinus, dermacentor reticulatus, artificial tick feeding

                Comments

                Comment on this article