21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sensory gating, inhibition control and gamma oscillations in the human somatosensory cortex

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inhibiting the responses to irrelevant stimuli is an essential component of human cognitive function. Pre-attentive auditory sensory gating (SG), an attenuated neural activation to the second identical stimulus, has been found to be related to the performance of higher-hierarchical brain function. However, it remains unclear whether other cortical regions, such as somatosensory cortex, also possess similar characteristics, or if such a relationship is modality-specific. This study used magnetoencephalography to record neuromagnetic responses to paired-pulse electrical stimulation to median nerve in 22 healthy participants. Somatosensory SG ratio and cortical brain oscillations were obtained and compared with the behavioral performance of inhibition control, as evaluated by somatosensory and auditory Go-Nogo tasks. The results showed that somatosensory P35m SG ratio correlated with behavioral performance of inhibition control. Such relationship was also established in relation to the auditory Go-Nogo task. Finally, a higher frequency value of evoked gamma oscillations was found to relate to a better somatosensory SG ability. In conclusion, our data provided an empirical link between automatic cortical inhibition and behavioral performance of attentive inhibition control. This study invites further research on the relationships among gamma oscillations, neurophysiological indices, and behavioral performance in clinical populations in terms of SG or cortical inhibition.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

          Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans.

            Functional imaging of the human brain is an increasingly important technique for clinical and cognitive neuroscience research, with functional MRI (fMRI) of the blood oxygen level-dependent (BOLD) response and electroencephalography or magnetoencephalography (MEG) recordings of neural oscillations being 2 of the most popular approaches. However, the neural and physiological mechanisms that generate these responses are only partially understood and sources of interparticipant variability in these measures are rarely investigated. Here, we test the hypothesis that the properties of these neuroimaging metrics are related to individual levels of cortical inhibition by combining magnetic resonance spectroscopy to quantify resting GABA concentration in the visual cortex, MEG to measure stimulus-induced visual gamma oscillations and fMRI to measure the BOLD response to a simple visual grating stimulus. Our results demonstrate that across individuals gamma oscillation frequency is positively correlated with resting GABA concentration in visual cortex (R = 0.68; P < 0.02), BOLD magnitude is inversely correlated with resting GABA (R = -0.64; P < 0.05) and that gamma oscillation frequency is strongly inversely correlated with the magnitude of the BOLD response (R = -0.88; P < 0.001). Our results are therefore supportive of recent theories suggesting that these functional neuroimaging metrics are dependent on the excitation/inhibition balance in an individual's cortex and have important implications for the interpretation of functional imaging results, particularly when making between-group comparisons in clinical research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Orientation discrimination performance is predicted by GABA concentration and gamma oscillation frequency in human primary visual cortex.

              Neuronal orientation selectivity has been shown in animal models to require corticocortical network cooperation and to be dependent on the presence of GABAergic inhibition. However, it is not known whether variability in these fundamental neurophysiological parameters leads to variability in behavioral performance. Here, using a combination of magnetic resonance spectroscopy, magnetoencephalography, and visual psychophysics, we show that individual performance on a visual orientation discrimination task is correlated with both the resting concentration of GABA and the frequency of stimulus-induced gamma oscillations in human visual cortex. Behaviorally, a strong oblique effect was found, with the mean angular threshold for oblique discrimination being five times higher than that for vertically oriented stimuli. Similarly, we found an oblique effect for the dependency of performance on neurophysiological parameters. Orientation detection thresholds were significantly negatively correlated with visual cortex GABA concentration for obliquely oriented patterns (r = -0.65, p < 0.015) but did not reach significance for vertically oriented stimuli (r = -0.39, p = 0.2). Similarly, thresholds for obliquely oriented stimuli were negatively correlated with gamma oscillation frequency (r = -0.65, p < 0.017), but thresholds for vertical orientations were not (r = -0.02, p = 0.9). Gamma oscillation frequency was positively correlated with GABA concentration in primary visual cortex (r = 0.67, p < 0.013). These results confirm the importance of GABAergic inhibition in orientation selectivity and demonstrate, for the first time, that interindividual performance on a simple visual task is linked to neurotransmitter concentration. The results also suggest a key role for GABAergic gamma oscillations in visual discrimination tasks.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                04 February 2016
                2016
                : 6
                : 20437
                Affiliations
                [1 ]Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University , Taoyuan, Taiwan
                [2 ]Healthy Aging Research Center, Chang Gung University , Taoyuan, Taiwan
                [3 ]Department of Psychiatry, Chang Gung Memorial Hospital , Taoyuan, Taiwan
                [4 ]Institute of Brain Science, National Yang-Ming University , Taipei, Taiwan
                [5 ]Brain Research Center, National Yang-Ming University , Taipei, Taiwan
                [6 ]Graduate Institute of Applied Physics, National Chengchi University , Taipei, Taiwan
                [7 ]Mind, Brain and Learning Center, National Chengchi University , Taipei, Taiwan
                [8 ]Department of Medicine, Chang Gung University , Taoyuan, Taiwan
                [9 ]Department of Traditional Chinese Medicine, Chang Gung University , Taoyuan, Taiwan
                Author notes
                Article
                srep20437
                10.1038/srep20437
                4740805
                26843358
                e7e53e3a-d49a-40c4-ae6b-2dc604c3aaa8
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 September 2015
                : 04 January 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article