36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of bacterial priming and daughter strand synthesis through helicase-primase interactions

      research-article
      , *
      Nucleic Acids Research
      Oxford University Press

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The replisome is a multi-component molecular machine responsible for rapidly and accurately copying the genome of an organism. A central member of the bacterial replisome is DnaB, the replicative helicase, which separates the parental duplex to provide templates for newly synthesized daughter strands. A unique RNA polymerase, the DnaG primase, associates with DnaB to repeatedly initiate thousands of Okazaki fragments per replication cycle on the lagging strand. A number of studies have shown that the stability and frequency of the interaction between DnaG and DnaB determines Okazaki fragment length. More recent work indicates that each DnaB hexamer associates with multiple DnaG molecules and that these primases can coordinate with one another to regulate their activities at a replication fork. Together, disparate lines of evidence are beginning to suggest that Okazaki fragment initiation may be controlled in part by crosstalk between multiple primases bound to the helicase.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides.

          We have determined the crystal structure of an active, hexameric fragment of the gene 4 helicase from bacteriophage T7. The structure reveals how subunit contacts stabilize the hexamer. Deviation from expected six-fold symmetry of the hexamer indicates that the structure is of an intermediate on the catalytic pathway. The structural consequences of the asymmetry suggest a "binding change" mechanism to explain how cooperative binding and hydrolysis of nucleotides are coupled to conformational changes in the ring that most likely accompany duplex unwinding. The structure of a complex with a nonhydrolyzable ATP analog provides additional evidence for this hypothesis, with only four of the six possible nucleotide binding sites being occupied in this conformation of the hexamer. This model suggests a mechanism for DNA translocation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Replication fork reactivation downstream of a blocked nascent leading strand.

            Unrepaired lesions in the DNA template pose a threat to accurate replication. Several pathways exist in Escherichia coli to reactivate a blocked replication fork. The process of recombination-dependent restart of broken forks is well understood, but the consequence of replication through strand-specific lesions is less well known. Here we show that replication can be restarted and leading-strand synthesis re-initiated downstream of an unrepaired block to leading-strand progression, even when the 3'-OH of the nascent leading strand is unavailable. We demonstrate that the loading by a replication restart system of a single hexamer of the replication fork helicase, DnaB, on the lagging-strand template is sufficient to coordinate priming by the DnaG primase of both the leading and lagging strands. These observations provide a mechanism for damage bypass during fork reactivation, demonstrate how daughter-strand gaps are generated opposite leading-strand lesions during the replication of ultraviolet-light-irradiated DNA, and help to explain the remarkable speed at which even a heavily damaged DNA template is replicated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              DNA primase acts as a molecular brake in DNA replication.

              A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Research
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                September 2006
                September 2006
                25 August 2006
                : 34
                : 15
                : 4082-4088
                Affiliations
                Department of Molecular and Cell Biology, University of California Berkeley, 237 Hildebrand Hall #3206, Berkeley, CA 94720, USA
                Author notes
                *To whom correspondence should be addressed. Tel: +1 510 643 9483; Fax: +1 510 643 9290; Email: jmberger@ 123456calmail.berkeley.edu
                Article
                10.1093/nar/gkl363
                1616961
                16935873
                e7e72fed-74fb-4191-81e6-e9d74f34f030
                © The Author 2006. Published by Oxford University Press. All rights reserved

                The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oxfordjournals.org

                History
                : 22 March 2006
                : 11 April 2006
                : 25 April 2006
                Categories
                Survey and Summary

                Genetics
                Genetics

                Comments

                Comment on this article