38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recurrence of spatio-temporal patterns of spikes and neural avalanches at the critical point of a non-equilibrium phase transition

      abstract
      1 , , 2
      BMC Neuroscience
      BioMed Central
      Twenty Second Annual Computational Neuroscience Meeting: CNS*2013
      13-18 July 2013

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recently, many experimental results have supported the idea that the brain operates near a critical point [1-5], as reflected by the power laws of avalanche size distributions and maximization of fluctuations. Several models have been proposed as explanations for the power law distributions that emerge in spontaneous cortical activity [6,5]. Models based on branching processes and on self-organized criticality are the most relevant. However, there are additional features of neuronal avalanches that are not captured in these models, such as the stable recurrence of particular spatiotemporal patterns and the conditions under which these precise and diverse patterns can be retrieved [4]. Indeed, neuronal avalanches are highly repeatable and can be clustered into statistically significant families of activity patterns that satisfy several requirements of a memory substrate. In many areas of the brain having different brain functionality, repeatable precise spatiotemporal patterns of spikes seem to play a crucial role in the coding and storage of information. Many in vitro and in vivo studies have demonstrated that cortical spontaneous activity occurs in precise spatiotemporal patterns, which often reflect the activity produced by external or sensory inputs. The temporally structured replay of spatiotemporal patterns has been observed to occur, both in the cortex and hippocampus, during sleep and in the awake state, and it has been hypothesized that this replay may subserve memory consolidation. Previous studies have separately addressed the topics of phase-coded memory storage and neuronal avalanches, but our work is the first to show how these ideas converge in a single cortical model. We study a network of leaky integrate- and-fire (LIF) neurons, whose synaptic connections are designed with a rule based on spike-timing dependent plasticity (STDP). The network works as an associative memory of phase-coded spatiotemporal patterns, whose storage capacity has been studied in [7]. In this paper, we study the spontaneous dynamics when the excitability of the model is tuned to be at the critical point of a phase transition, between the successful persistent replay and non-replay of encoded patterns. We introduce an order parameter, which measures the overlap (similarity) between the activity of the network and the stored patterns. We find that, depending on the excitability of the network, different working regimes are possible. For high excitability, the dynamical attractors are stable, and a collective activity that replays one of the stored patterns emerges spontaneously, while for low excitability, no replay is induced. Between these two regimes, there is a critical region in which the dynamical attractors are unstable, and intermittent short replays are induced by noise. At the critical spiking threshold, the order parameter goes from zero to one, and its fluctuations are maximized, as expected for a phase transition (and as observed in recent experimental results in the brain [5]). Notably, in this critical region, the avalanche size and duration distributions follow power laws. Critical exponents are consistent with a scaling relationship observed recently in neural avalanches measurements. In conclusion, our simple model suggests that avalanche power laws in cortical spontaneous activity may be the effect of a network at the critical point between the replay and non-replay of spatiotemporal patterns. Interestingly in the cortex, the emergence of power law distributions of avalanche sizes depends on an optimal concentration of dopamine and on the balance of excitation and inhibition, suggesting that particular parameters must be appropriately tuned. This may suggest that the cortex operates near the critical point of a phase transition, characterized by a critical value of excitability.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Being Critical of Criticality in the Brain

          Relatively recent work has reported that networks of neurons can produce avalanches of activity whose sizes follow a power law distribution. This suggests that these networks may be operating near a critical point, poised between a phase where activity rapidly dies out and a phase where activity is amplified over time. The hypothesis that the electrical activity of neural networks in the brain is critical is potentially important, as many simulations suggest that information processing functions would be optimized at the critical point. This hypothesis, however, is still controversial. Here we will explain the concept of criticality and review the substantial objections to the criticality hypothesis raised by skeptics. Points and counter points are presented in dialog form.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Emergent complex neural dynamics

            A large repertoire of spatiotemporal activity patterns in the brain is the basis for adaptive behaviour. Understanding the mechanism by which the brain's hundred billion neurons and hundred trillion synapses manage to produce such a range of cortical configurations in a flexible manner remains a fundamental problem in neuroscience. One plausible solution is the involvement of universal mechanisms of emergent complex phenomena evident in dynamical systems poised near a critical point of a second-order phase transition. We review recent theoretical and empirical results supporting the notion that the brain is naturally poised near criticality, as well as its implications for better understanding of the brain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The organizing principles of neuronal avalanches: cell assemblies in the cortex?

              Neuronal avalanches are spatiotemporal patterns of neuronal activity that occur spontaneously in superficial layers of the mammalian cortex under various experimental conditions. These patterns reflect fast propagation of local synchrony, display a rich spatiotemporal diversity and recur over several hours. The statistical organization of pattern sizes is invariant to the choice of spatial scale, demonstrating that the functional linking of cortical sites into avalanches occurs on all spatial scales with a fractal organization. These features suggest an underlying network of neuronal interactions that balances diverse representations with predictable recurrence, similar to what has been theorized for cell assembly formation. We propose that avalanches reflect the transient formation of cell assemblies in the cortex and discuss various models that provide mechanistic insights into the underlying dynamics, suggesting that they arise in a critical regime.
                Bookmark

                Author and article information

                Contributors
                Conference
                BMC Neurosci
                BMC Neurosci
                BMC Neuroscience
                BioMed Central
                1471-2202
                2013
                8 July 2013
                : 14
                : Suppl 1
                : P89
                Affiliations
                [1 ]Department of Physics, University of Napoli "Federico II", Napoli & CNR-SPIN & INFN Sez. di Napoli, Italy
                [2 ]Department of Physics, University of Salerno, Salerno & INFN Sez di Napoli Gruppo Colll Salerno, Italy
                Article
                1471-2202-14-S1-P89
                10.1186/1471-2202-14-S1-P89
                3704774
                e7f19dd0-a756-4668-b1c5-b9abdddf6626
                Copyright ©2013 de Candia and Scarpetta; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Twenty Second Annual Computational Neuroscience Meeting: CNS*2013
                Paris, France
                13-18 July 2013
                History
                Categories
                Poster Presentation

                Neurosciences
                Neurosciences

                Comments

                Comment on this article