10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Epigenetic control of Epstein–Barr virus transcription – relevance to viral life cycle?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          DNA methylation normally leads to silencing of gene expression but Epstein–Barr virus (EBV) provides an exception to the epigenetic paradigm. DNA methylation is absolutely required for the expression of many viral genes. Although the viral genome is initially un-methylated in newly infected cells, it becomes extensively methylated during the establishment of viral latency. One of the major regulators of EBV gene expression is a viral transcription factor called Zta (BZLF1, ZEBRA, Z) that resembles the cellular AP1 transcription factor. Zta recognizes at least 32 variants of a 7-nucleotide DNA sequence element, the Zta-response element (ZRE), some of which contain a CpG motif. Zta only binds to the latter class of ZREs in their DNA-methylated form, whether they occur in viral or cellular promoters and is functionally relevant for the activity of these promoters. The ability of Zta to interpret the differential DNA methylation of the viral genome is paramount for both the establishment of viral latency and the release from latency to initiate viral replication.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A new model of Epstein-Barr virus infection reveals an important role for early lytic viral protein expression in the development of lymphomas.

          Epstein-Barr virus (EBV) infects cells in latent or lytic forms, but the role of lytic infection in EBV-induced lymphomas is unclear. Here, we have used a new humanized mouse model, in which both human fetal CD34(+) hematopoietic stem cells and thymus/liver tissue are transplanted, to compare EBV pathogenesis and lymphoma formation following infection with a lytic replication-defective BZLF1-deleted (Z-KO) virus or a lytically active BZLF1(+) control. Both the control and Z-KO viruses established long-term viral latency in all infected animals. The infection appeared well controlled in some animals, but others eventually developed CD20(+) diffuse large B cell lymphomas (DLBCL). Animals infected with the control virus developed tumors more frequently than Z-KO virus-infected animals. Specific immune responses against EBV-infected B cells were generated in mice infected with either the control virus or the Z-KO virus. In both cases, forms of viral latency (type I and type IIB) were observed that are less immunogenic than the highly transforming form (type III) commonly found in tumors of immunocompromised hosts, suggesting that immune pressure contributed to the outcome of the infection. These results point to an important role for lytic EBV infection in the development of B cell lymphomas in the context of an active host immune response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer.

            The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome.

              EBV, a member of the herpes virus family, is a paradigm for human tumor viruses and a model of viral latency amenable for study in vitro. It induces resting human B lymphocytes to proliferate indefinitely in vitro and initially establishes a strictly latent infection in these cells. BZLF1, related to the cellular activating protein 1 (AP-1) family of transcription factors, is the viral master gene essential and sufficient to mediate the switch to induce the EBV lytic phase in latently infected B cells. Enigmatically, after infection BZLF1 is expressed very early in the majority of primary B cells, but its early expression fails to induce the EBV lytic phase. We show that the early expression of BZLF1 has a critical role in driving the proliferation of quiescent naïve and memory B cells but not of activated germinal center B cells. BZLF1's initial failure to induce the EBV lytic phase relies on the viral DNA at first being unmethylated. We have found that the eventual and inevitable methylation of viral DNA is a prerequisite for productive infection in stably, latently infected B cells which then yield progeny virus lacking cytosine-phosphatidyl-guanosine (CpG) methylation. This progeny virus then can repeat EBV's epigenetically regulated, biphasic life cycle. Our data indicate that the viral BZLF1 protein is crucial both to establish latency and to escape from it. Our data also indicate that EBV has evolved to appropriate its host's mode of methylating DNA for its own epigenetic regulation.
                Bookmark

                Author and article information

                Journal
                Front Genet
                Front Genet
                Front. Genet.
                Frontiers in Genetics
                Frontiers Media S.A.
                1664-8021
                27 August 2013
                2013
                : 4
                : 161
                Affiliations
                School of Life Sciences, University of Sussex Brighton, UK
                Author notes

                Edited by: Silvia Carolina Galvan, Universidad Nacional Autonoma de Mexico, Mexico

                Reviewed by: Yi Huang, University of Pittsburgh, USA; Mariana Brait, Johns Hopkins University, USA

                *Correspondence: Alison J. Sinclair, School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, UK e-mail: a.j.sinclair@ 123456sussex.ac.uk

                This article was submitted to Epigenomics and Epigenetics, a section of the journal Frontiers in Genetics.

                Article
                10.3389/fgene.2013.00161
                3753449
                23986773
                e7f40dd8-5d20-44d2-a99a-fe06189d3948
                Copyright © Sinclair.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 May 2013
                : 04 August 2013
                Page count
                Figures: 1, Tables: 0, Equations: 0, References: 30, Pages: 4, Words: 0
                Categories
                Genetics
                Mini Review Article

                Genetics
                epstein–barr virus,cpg-dna methylation,dna binding,transcription factor,replication cycle,cancer

                Comments

                Comment on this article