25
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new species of Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from China, with an account on the histochemical structure of its major nervous system

      , , , , ,
      Zoosystematics and Evolution
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          By means of an integrated approach, including molecular, morphological, anatomical and histological data, we describe a new species of freshwater flatworm of the genus Dugesia from southwest China, representing the third species recorded for the country. Morphologically, the new species, Dugesia umbonata Song & Wang, sp. nov., is particularly characterised by the presence of a muscularised hump immediately antero-dorsally to a knee-shaped bend in its bursal canal and by an ejaculatory duct that opens subterminally through the dorsal side of the penis papilla. Four molecular datasets (18S rDNA; ITS-1; 28S rDNA; COI) facilitated determination of the phylogenetic position of the new species, which belongs to a clade comprising other species from the Australasian and Oriental regions. We also analysed the structure of its major nervous system by means of the acetylcholinesterase (AChE) histochemical method and compared these results with data available for three other species of Dugesia.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          DAMBE6: New Tools for Microbial Genomics, Phylogenetics, and Molecular Evolution

          Xuhua Xia (2017)
          Abstract DAMBE is a comprehensive software workbench for data analysis in molecular biology, phylogenetics, and evolution. Several important new functions have been added since version 5 of DAMBE: 1) comprehensive genomic profiling of translation initiation efficiency of different genes in different prokaryotic species, 2) a new index of translation elongation (ITE) that takes into account both tRNA-mediated selection and background mutation on codon–anticodon adaptation, 3) a new and accurate phylogenetic approach based on pairwise alignment only, which is useful for highly divergent sequences from which a reliable multiple sequence alignment is difficult to obtain. Many other functions have been updated and improved including PWM for motif characterization, Gibbs sampler for de novo motif discovery, hidden Markov models for protein secondary structure prediction, self-organizing map for nonlinear clustering of transcriptomic data, comprehensive sequence alignment, and phylogenetic functions. DAMBE features a graphic, user-friendly and intuitive interface, and is freely available from http://dambe.bio.uottawa.ca.
            Bookmark
            • Record: found
            • Abstract: not found
            • Book Chapter: not found

            Assessing substitution saturation with DAMBE

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of motor function modulated by cholinergic neurons in planarian Dugesia japonica.

              Recent studies of the freshwater planarian Dugesia japonica have revealed fundamental mechanisms and unique aspects of neuroscience and neuroregeneration. Here, we identified the gene for planarian choline acetyltransferase (Djchat), which is essential for acetylcholine (ACh) biosynthesis. Immunofluorescence studies using anti-Dugesia japonica ChAT (DjChAT) antibody revealed that cholinergic neurons are widely distributed in the planarian nervous system, including the brain, ventral nerve cords, optic nerves, and pharyngeal nerve plexus. In order to investigate the function of cholinergic neurons in planarians, we used both pharmacological and RNA interference (RNAi) approaches. Administration of physostigmine (an acetylcholinesterase inhibitor) clearly elevated the amount of ACh, and then induced sudden muscle contraction behavior in a concentration-dependent manner. In addition, we found that pretreatment with tubocurarine (a muscle nicotinic ACh receptor antagonist) or atropine (a non-selective muscarinic ACh receptor antagonist), but not pretreatment with mecamylamine (a neural nicotinic ACh receptor antagonist), significantly extended the latency time for physostigmine-induced contraction behavior, suggesting that muscle nicotinic ACh receptors and muscarinic ACh receptors contribute to physostigmine-induced contraction behavior. We also confirmed that ACh biosynthesis ability and DjChAT-immunoreactivity were eliminated in Djchat(RNAi) planarians. Moreover, the decrease of the level of ACh induced by Djchat(RNAi) caused extension of the latency time for contraction behavior. Our findings support the possibility that the cholinergic functions of planarians are similar to those of vertebrates, suggesting that planarians are simple but useful model organisms for getting insight into the cholinergic nervous system in higher animals. 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Zoosystematics and Evolution
                ZSE
                Pensoft Publishers
                1860-0743
                1435-1935
                June 26 2020
                June 26 2020
                : 96
                : 2
                : 431-447
                Article
                10.3897/zse.96.52484
                e7fa47cf-ab5d-4353-9922-22f2a18e69b5
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article