17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chromium as an Environmental Pollutant: Insights on Induced Plant Toxicity

      Journal of Botany
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the past decades the increased use of chromium (Cr) in several anthropogenic activities and consequent contamination of soil and water have become an increasing concern. Cr exists in several oxidation states but the most stable and common forms are Cr(0), Cr(III) and Cr(VI) species. Cr toxicity in plants depends on its valence state. Cr(VI) as being highly mobile is toxic, while Cr(III) as less mobile is less toxic. Cr is taken up by plants through carriers of essential ions such as sulphate. Cr uptake, translocation, and accumulation depend on its speciation, which also conditions its toxicity to plants. Symptoms of Cr toxicity in plants are diverse and include decrease of seed germination, reduction of growth, decrease of yield, inhibition of enzymatic activities, impairment of photosynthesis, nutrient and oxidative imbalances, and mutagenesis.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Interactions of chromium with microorganisms and plants.

          Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The presence of Cr in the environment has selected microbial and plant variants able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms, and probably by plants, include biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution. In this review we summarize the interactions of bacteria, algae, fungi and plants with Cr and its compounds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The biochemistry of environmental heavy metal uptake by plants: implications for the food chain.

            Plants absorb a number of elements from soil, some of which have no known biological function and some are known to be toxic at low concentrations. As plants constitute the foundation of the food chain, some concerns have been raised about the possibility of toxic concentrations of certain elements being transported from plants to higher strata of the food chain. Special attention has been given to the uptake and biotransformation mechanisms occurring in plants and its role in bioaccumulation and impact on consumers, especially human beings. While this review draws particular attention to metal accumulation in edible plants, researched studies of certain wild plants and their consumers are included. Furthermore, this review focuses on plant uptake of the toxic elements arsenic, cadmium, chromium, mercury, and lead and their possible transfer to the food chain. These elements were selected because they are well-established as being toxic for living systems and their effects in humans have been widely documented. Arsenic is known to promote cancer of the bladder, lung, and skin and can be acquired, for example, through the consumption of As-contaminated rice. Cadmium can attack kidney, liver, bone, and it also affects the female reproduction system. Cadmium also can be found in rice. Chromium can produce cancer, and humans can be exposed through smoking and eating Cr-laden vegetables. Lead and mercury are well known neurotoxins that can be consumed via seafood, vegetables and rice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Chromium stress in plants

              The article presents an overview of the mechanism of chromium stress in plants. Chromium is known to be a toxic metal that can cause severe damage to plants and animals. Chromium-induced oxidative stress involves induction of lipid peroxidation in plants that causes severe damage to cell membranes. Oxidative stress induced by chromium initiates the degradation of photosynthetic pigments causing decline in growth. High chromium concentration can disturb the chloroplast ultrastructure thereby disturbing the photosynthetic process. Like copper and iron, chromium is also a redox metal and its redox behaviour exceeds that of other metals like Co, Fe, Zn, Ni, etc. The redox behaviour can thus be attributed to the direct involvement of chromium in inducing oxidative stress in plants. Chromium can affect antioxidant metabolism in plants. Antioxidant enzymes like SOD, CAT, POX and GR are found to be susceptible to chromium resulting in a decline in their catalytic activities. This decline in antioxidant efficiency is an important factor in generating oxidative stress in plants under chromium stress. However, both metallothioneins and organic acids are important in plants as components of tolerance mechanisms and are also involved in detoxification of this toxic metal.
                Bookmark

                Author and article information

                Journal
                Journal of Botany
                Journal of Botany
                Hindawi Limited
                2090-0120
                2090-0139
                2012
                2012
                : 2012
                :
                : 1-8
                Article
                10.1155/2012/375843
                e7fb9dd8-4ef6-45af-93c2-23c744149c45
                © 2012

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article