45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      T Lymphocytes from Chagasic Patients Are Activated but Lack Proliferative Capacity and Down-Regulate CD28 and CD3ζ

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Chronic persistent infections have been associated with T lymphocytes functional impairment. The aim of this study was to compare the activation status, the proliferative potential and the expression of CD28 and CD3ζ chain on T lymphocytes between chronic chagasic patients and uninfected controls.

          Methodology/Principal Findings

          Forty-two chronic chagasic patients, 28 healthy individuals and 32 non-chagasic cardiomyopathy donors were included. Peripheral blood was marked for CD3, CD4, CD8, HLA-DR, CD28, CD38 and intracellular CD3ζ. Peripheral blood mononuclear cells were stained with carboxyfluorescein diacetate succinimidylester and incubated with T. cruzi lysate or phytohemagglutinin for five days. Cells from 3 healthy controls were incubated with T. cruzi trypomastigotes separated with transwells; and the expression of CD3ζ chain and proliferation index was determined. Heart-infiltrating cells from two chronic chagasic patients were tested for the aforementioned cellular markers. Chagasic patients displayed higher frequencies of CD4+/HLA-DR+/CD38+ (8.1%±6.1) and CD8+/HLA-DR+/CD38+ (19.8±8.9) T cells in comparison with healthy (1.6±1.0; 10.6±8.0) and non-chagasic cardiomyopathy donors (2.9±2.9; 5.8±6.8). Furthermore, the percentage of CD4+ activated T cells was higher in chagasic patients with cardiac involvement. CD8+ T cells proliferation index in chagasic donors (1.7±0.3) was lower when compared with healthy (2.3±0.3) and non-chagasic cardiomyopathy individuals (3.1±1.1). The frequencies of CD4+/CD28+ and CD8+/CD28+ T cells, as well as the CD3ζ bright/CD3ζ dim% ratios in CD4+ and CD8+ were lower in chagasic patients when compared with both control groups. The CD3ζ bright/CD3ζ dim% ratio and proliferative indexes for CD4+ and CD8+ T lymphocytes decreased gradually in those cells cultivated with parasites and displayed lower values than those incubated with medium alone. Finally, heart-infiltrating T cells from two T. cruzi infected patients also expressed activation markers and down-regulate CD28 and CD3ζ.

          Conclusions

          CD8+ T lymphocytes from chagasic donors displayed reduced proliferative capacity, which might be associated with CD3ζ down-regulation and diminished CD28 expression on CD4 T cells.

          Author Summary

          In Chagas disease, caused by Trypanosoma cruzi, there is an acute onset from which most of the individuals recover if a competent immune response develops. Patients can remain asymptomatic (indeterminate) for many years, but near 30% can develop specific organ damage, mainly the heart. The pathogenesis of chronic Chagas cardiomyopathy is associated with parasite persistence, inadequate immune response and autoimmunity. Here we explored the bulk T cells response of chronic chagasic patients with and without cardiomyopathy, uninfected controls and patients with non-chagasic cardiomyopathy. T cells from chagasic donors expressed higher levels of activation markers, and their co-expression on CD4+ T cells distinguished those donors with or without cardiac damage. Mitogen-induced proliferation is highly impaired in the CD8+ T cells compartment, and interestingly activated CD8+ T cells are negatively correlated with the CD4+/CD28− population. The expression of the CD3ζ chain and CD28 was also diminished in chagasic patients. Furthermore, in vitro studies with blood mononuclear cells from uninfected donors showed that the indirect contact with live parasite decreased expression of CD3ζ chain and altered the T cell mitogen-induced proliferation. These results suggest a global impairment of the peripheral T cells response, which is probably associated with parasite persistence.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes.

          A long-standing paradox in cellular immunology concerns the conditional requirement for CD4+ T-helper (T(H)) cells in the priming of cytotoxic CD8+ T lymphocyte (CTL) responses in vivo. Whereas CTL responses against certain viruses can be primed in the absence of CD4+ T cells, others, such as those mediated through 'cross-priming' by host antigen-presenting cells, are dependent on T(H) cells. A clearer understanding of the contribution of T(H) cells to CTL development has been hampered by the fact that most T(H)-independent responses have been demonstrated ex vivo as primary cytotoxic effectors, whereas T(H)-dependent responses generally require secondary in vitro re-stimulation for their detection. Here, we have monitored the primary and secondary responses of T(H)-dependent and T(H)-independent CTLs and find in both cases that CD4+ T cells are dispensable for primary expansion of CD8+ T cells and their differentiation into cytotoxic effectors. However, secondary CTL expansion (that is, a secondary response upon re-encounter with antigen) is wholly dependent on the presence of T(H) cells during, but not after, priming. Our results demonstrate that T-cell help is 'programmed' into CD8+ T cells during priming, conferring on these cells a hallmark of immune response memory: the capacity for functional expansion on re-encounter with antigen.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment.

            Chronic viral infections often result in ineffective CD8 T-cell responses due to functional exhaustion or physical deletion of virus-specific T cells. However, how persisting virus impacts various CD8 T-cell effector functions and influences other aspects of CD8 T-cell dynamics, such as immunodominance and tissue distribution, remains largely unknown. Using different strains of lymphocytic choriomeningitis virus (LCMV), we compared responses to the same CD8 T-cell epitopes during acute or chronic infection. Persistent infection led to a disruption of the normal immunodominance hierarchy of CD8 T-cell responses seen following acute infection and dramatically altered the tissue distribution of LCMV-specific CD8 T cells in lymphoid and nonlymphoid tissues. Most importantly, CD8 T-cell functional impairment occurred in a hierarchical fashion in chronically infected mice. Production of interleukin 2 and the ability to lyse target cells in vitro were the first functions compromised, followed by the ability to make tumor necrosis factor alpha, while gamma interferon production was most resistant to functional exhaustion. Antigen appeared to be the driving force for this loss of function, since a strong correlation existed between the viral load and the level of exhaustion. Further, epitopes presented at higher levels in vivo resulted in physical deletion, while those presented at lower levels induced functional exhaustion. A model is proposed in which antigen levels drive the hierarchical loss of different CD8 T-cell effector functions during chronic infection, leading to distinct stages of functional impairment and eventually to physical deletion of virus-specific T cells. These results have implications for the study of human chronic infections, where similar T-cell deletion and functional dysregulation has been observed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines.

              To explore the human T cell response to acute viral infection, we performed a longitudinal analysis of CD8(+) T cells responding to the live yellow fever virus and smallpox vaccines--two highly successful human vaccines. Our results show that both vaccines generated a brisk primary effector CD8(+) T cell response of substantial magnitude that could be readily quantitated with a simple set of four phenotypic markers. Secondly, the vaccine-induced T cell response was highly specific with minimal bystander effects. Thirdly, virus-specific CD8(+) T cells passed through an obligate effector phase, contracted more than 90% and gradually differentiated into long-lived memory cells. Finally, these memory cells were highly functional and underwent a memory differentiation program distinct from that described for human CD8(+) T cells specific for persistent viruses. These results provide a benchmark for CD8(+) T cell responses induced by two of the most effective vaccines ever developed.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                January 2013
                31 January 2013
                : 7
                : 1
                : e2038
                Affiliations
                [1 ]Grupo de Ciencias Básicas Médicas, Facultad de Medicina, Universidad de los Andes, Bogotá, Colombia
                [2 ]Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
                [3 ]Grupo de Trasplante, Facultad de Medicina, Pontificia Universidad Javeriana y Hospital Universitario San Ignacio, Bogotá, Colombia
                [4 ]Grupo de Parasitología, Instituto Nacional de Salud, Bogotá, Colombia
                [5 ]Fundación Clínica Abood Shaio, Bogotá, Colombia
                [6 ]Laboratorio de Parasitología Molecular, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
                Federal University of São Paulo, Brazil
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NAG AC CJP JMG. Performed the experiments: NAG NIB JMG. Analyzed the data: NAG NIB AC CJP JMG. Contributed reagents/materials/analysis tools: AC NR ZC FR VV CJP JMG. Wrote the paper: NAG AC CJP JMG. Diagnosis of patients: NAG NIB ZC NR FR VV. Obtained informed consent from patients: NAG NIB NR ZC FR VV. Sample collections: NAG NIB NR ZC FR VV.

                Article
                PNTD-D-12-01139
                10.1371/journal.pntd.0002038
                3561132
                23383358
                e8006d74-c041-48bc-84c8-6b716d117545
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 6 September 2012
                : 14 December 2012
                Page count
                Pages: 11
                Funding
                This project was funded by the Vicerrectoría de Investigaciones, Universidad de los Andes. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immune Cells
                T Cells
                Immune Response
                Immunomodulation
                Microbiology
                Parasitology
                Medicine
                Infectious Diseases
                Neglected Tropical Diseases
                Chagas Disease
                Parasitic Diseases
                Chagas Disease

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article