23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Using high titer West Nile intravenous immunoglobulin from selected Israeli donors for treatment of West Nile virus infection

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          West Nile Virus (WNV) is endemic in Israel and a significant level of antibodies is present in the population due to natural exposure. Anecdotal cases suggested that the presence of anti-WNV antibodies in intravenous immunoglobulin (IVIG) from Israeli donors (IVIG-IL) assisted the recovery of patients with severe WNV infection.

          Methods

          To enhance the therapeutic efficacy of IVIG-IL against WNV infection, OMRIX Biopharmaceuticals, Israel, have developed a strategy for selection of plasma units from a 10% fraction of Israeli blood donors with anti-WNV antibodies. Positive units were processed into pharmaceutical grade WNV IVIG (WNIG). Following inoculation with WNV, mice received i.p. injections of different doses (0.01–8 mg/mouse) of IVIG-IL or WNIG, according to the specific experimental protocol.

          Results

          WNIG was about 10 times more potent (per gr of IgG) than was regular IVIG-IL when tested by ELISA and neutralization assays. In a mouse lethal WNV infection model, prophylactic treatment with WNIG was at least 5–10-fold more potent as compared to treatment with IVIG-IL. Treatment with WNIG during active encephalitis, three or four days following WNV infection, had a significant protective effect. WNIG was also very effective in protecting immunosuppressed mice. Indeed, treatment of dexamethasone-immunosuppressed mice with 0.2 or 1.0 mg WNIG 4 h after virus infection, led to 100% survival.

          Conclusion

          IVIG produced from selected plasma donated in WNV endemic regions can be used to produce WNV IVIG with superior activity for therapeutic and prophylactic measures.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          The outbreak of West Nile virus infection in the New York City area in 1999.

          In late August 1999, an unusual cluster of cases of meningoencephalitis associated with muscle weakness was reported to the New York City Department of Health. The initial epidemiologic and environmental investigations suggested an arboviral cause. Active surveillance was implemented to identify patients hospitalized with viral encephalitis and meningitis. Cerebrospinal fluid, serum, and tissue specimens from patients with suspected cases underwent serologic and viral testing for evidence of arboviral infection. Outbreak surveillance identified 59 patients who were hospitalized with West Nile virus infection in the New York City area during August and September of 1999. The median age of these patients was 71 years (range, 5 to 95). The overall attack rate of clinical West Nile virus infection was at least 6.5 cases per million population, and it increased sharply with age. Most of the patients (63 percent) had clinical signs of encephalitis; seven patients died (12 percent). Muscle weakness was documented in 27 percent of the patients and flaccid paralysis in 10 percent; in all of the latter, nerve conduction studies indicated an axonal polyneuropathy in 14 percent. An age of 75 years or older was an independent risk factor for death (relative risk adjusted for the presence or absence of diabetes mellitus, 8.5; 95 percent confidence interval, 1.2 to 59.1), as was the presence of diabetes mellitus (age-adjusted relative risk, 5.1; 95 percent confidence interval, 1.5 to 17.3). This outbreak of West Nile meningoencephalitis in the New York City metropolitan area represents the first time this virus has been detected in the Western Hemisphere. Given the subsequent rapid spread of the virus, physicians along the eastern seaboard of the United States should consider West Nile virus infection in the differential diagnosis of encephalitis and viral meningitis during the summer months, especially in older patients and in those with muscle weakness.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Epidemiology and Transmission Dynamics of West Nile Virus Disease

            West Nile virus (WNV) was first detected in the Western Hemisphere in 1999 during an outbreak of encephalitis in New York City. Over the next 5 years, the virus spread across the continental United States as well as north into Canada, and southward into the Caribbean Islands and Latin America (1). This article highlights new information about the epidemiology and transmission dynamics of human WNV disease obtained over the past 5 years of intensified research. Epidemiology WNV is transmitted primarily by the bite of infected mosquitoes that acquire the virus by feeding on infected birds. The intensity of transmission to humans is dependent on abundance and feeding patterns of infected mosquitoes and on local ecology and behavior that influence human exposure to mosquitoes. Although up to 55% of affected populations became infected during epidemics in Africa, more recent outbreaks in Europe and North America have yielded much lower attack rates (1,2). In the area of most intense WNV transmission in Queens, New York, in 1999, ≈2.6% of residents were infected (most of these were asymptomatic infections), and similarly low prevalence of infection has been seen in other areas of the United States (3,4). WNV outbreaks in Europe and the Middle East since 1995 appear to have caused infection in 1,000 potentially WNV-viremic blood donations were identified, and the corresponding blood components were sequestered. Nevertheless, 6 WNV cases due to transfusion were documented in 2003, and at least 1 was documented in 2004, indicating that infectious blood components with low concentrations of WNV may escape current screening tests (19). One instance of possible WNV transmission through dialysis has been reported (20). WNV transmission through organ transplantation was also first described during the 2002 epidemic (15). Chronically immunosuppressed organ transplant patients appear to have an increased risk for severe WNV disease, even after mosquito-acquired infection (16). During 2002, the estimated risk of neuroinvasive WNV disease in solid organ transplant patients in Toronto, Canada, was approximately 40 times greater than in the general population (16). Whether other immunosuppressed or immunocompromised patients are at increased risk for severe WNV disease is uncertain, but severe WNV disease has been described among immunocompromised patients. WNV infection has been occupationally acquired by laboratory workers through percutaneous inoculation and possibly through aerosol exposure (21,22). An outbreak of WNV disease among turkey handlers at a turkey farm raised the possibility of aerosol exposure (17). Dynamics of Transmission: Vectors WNV is transmitted primarily by Culex mosquitoes, but other genera may also be vectors (23). In Europe and Africa, the principal vectors are Cx. pipiens, Cx. univittatus, and Cx. antennatus, and in India, species of the Cx. vishnui complex (6,24). In Australia, Kunjin virus is transmitted primarily by Cx. annulirostris (11). In North America, WNV has been found in 59 different mosquito species with diverse ecology and behavior; however, 40%. Field studies during and after WNV outbreaks in several areas of the United States have confirmed that house sparrows were abundant and frequently infected with WNV, characteristics that would allow them to serve as important amplifying hosts (23,25,37). The importance of birds in dispersing WNV remains speculative. Local movements of resident, nonmigratory birds and long-range travel of migratory birds may both contribute to the spread of WNV (38,39). Although WNV was isolated from rodents in Nigeria and a bat in India, most mammals do not appear to generate viremia levels of sufficient titer to contribute to transmission (24,40–42). Three reptilian and 1 amphibian species (red-ear slider, garter snake, green iguana, and North American bullfrog) were found to be incompetent as amplifying hosts of a North American WNV strain, and no signs of illness developed in these animals (43). Viremia levels of sufficient titer to infect mosquitoes were found after experimental infection of young alligators (Alligator mississippiensis) (44). In Russia, the lake frog (Rana ridibunda) appears to be a competent reservoir (45). Nonmosquitoborne WNV transmission has been observed or strongly suspected among farmed alligators, domestic turkeys in Wisconsin, and domestic geese in Canada (17,46,47). Transmission through close contact has been confirmed in both birds and alligators in laboratory conditions but has yet to be documented in wild vertebrate populations (23,36,44). Control of WNV Transmission Avoiding human exposure to WNV-infected mosquitoes remains the cornerstone for preventing WNV disease. Source reduction, application of larvicides, and targeted spraying of pesticides to kill adult mosquitoes can reduce the abundance of mosquitoes, but demonstrating their impact on the incidence of human WNV disease is challenging because of the difficulty in accounting for all determinants of mosquito abundance and human exposure. One study indicated that clustering of human WNV disease in Chicago varied between mosquito abatement districts, suggesting that mosquito control may have some impact on transmission to humans (14). Persons in WNV-endemic areas should wear insect repellent on skin and clothes when exposed to mosquitoes and avoid being outdoors during dusk to dawn when mosquito vectors of WNV are abundant. Of insect repellents recommended for use on skin, those containing N,N-diethyl-m-toluamide (DEET), picaridin (KBR-3023), or oil of lemon eucalyptus (p-menthane-3,8 diol) provide long-lasting protection (48). Both DEET and permethrin provide effective protection against mosquitoes when applied to clothing. Persons' willingness to use DEET as a repellent appears to be influenced primarily by their level of concern about being bitten by mosquitoes and by their concern that DEET may be harmful to health, despite its good safety record (49). To prevent transmission of WNV through blood transfusion, blood donations in WNV-endemic areas should be screened by using nucleic acid amplification tests. Screening of organ donors for WNV infection has not been universally implemented because of concern about rejecting essential organs after false-positive screening results (50). Pregnant women should avoid exposure to mosquito bites to reduce the risk for intrauterine WNV transmission. Future Directions WNV disease will likely continue to be a public health concern for the foreseeable future; the virus has become established in a broad range of ecologic settings and is transmitted by a relatively large number of mosquito species. WNV will also likely continue to spread into Central and South America, but the public health implications of this spread remain uncertain. Observations thus far in North America indicate that circulation of other flaviviruses, such as dengue, viral mutation, and differing ecologic conditions may yield different clinical manifestations and transmission dynamics. Over the next few years, research efforts might well be focused in several areas. Research into new methods to reduce human exposure to mosquitoes is crucial and can help prevent other mosquitoborne illnesses. This should include development of new methods to reduce mosquito abundance, development of new repellents, and behavioral research to enhance the use of existing effective repellents and other personal protective measures against mosquito bites. A better understanding of the dynamics of nonmosquitoborne transmission is essential to prevent disease among infants of infected mothers and recipients of blood transfusions and transplanted organs. Currently available prevention strategies such as the dissemination of knowledge and products for personal protection from mosquito exposure and the application of existing techniques for reducing mosquito abundance in communities at risk of WNV transmission need to be vigorously implemented. National and international surveillance for WNV transmission will be important to monitor spread of the virus and the effect of control strategies. Finally, further research into the ecologic determinants of WNV transmission, including climatic factors and dynamics of reservoir and vector populations, could help in determining geographic areas of higher risk for WNV disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Passive antibody therapy for infectious diseases.

              Antibody-based therapies are currently undergoing a renaissance. After being developed and then largely abandoned in the twentieth century, many antibody preparations are now in clinical use. However, most of the reagents that are available target non-infectious diseases. Interest in using antibodies to treat infectious diseases is now being fuelled by the wide dissemination of drug-resistant microorganisms, the emergence of new microorganisms, the relative inefficacy of antimicrobial drugs in immunocompromised hosts and the fact that antibody-based therapies are the only means to provide immediate immunity against biological weapons. Given the need for new antimicrobial therapies and many recent technological advances in the field of immunoglobulin research, there is considerable optimism regarding renewed applications of antibody-based therapy for the prevention and treatment of infectious diseases.
                Bookmark

                Author and article information

                Journal
                BMC Infect Dis
                BMC Infectious Diseases
                BioMed Central
                1471-2334
                2009
                17 February 2009
                : 9
                : 18
                Affiliations
                [1 ]The Shraga Segal Dept. of Microbiology and Immunology, Ben Gurion University, Beer Sheva, Israel
                [2 ]Kimron Veterinary Institute, Department of Virology, Beit Dagan, Israel
                [3 ]OMRIX Biopharmaceuticals, Weizmann Science Park, Ness-Ziona, Israel
                [4 ]MDA National Blood Services, Tel Hashomer, Kiryat Ono, Israel
                Article
                1471-2334-9-18
                10.1186/1471-2334-9-18
                2660335
                19222853
                e8007c7c-1368-470f-a12b-80bb72f5ab69
                Copyright ©2009 Ben-Nathan et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 August 2008
                : 17 February 2009
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article