18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nutrient losses and greenhouse gas emissions from dairy production in China: Lessons learned from historical changes and regional differences.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The dairy industry in China was rapidly expanded and intensified from 1980 to 2010, engendering potential long-term impacts on the environment and natural resources. However, impacts of dairy intensification on nitrogen (N) and phosphorus (P) losses and greenhouse gas (GHG) emissions were unknown. This study was undertaken to examine these relations using the NUtrient flows in Food chains, Environment and Resources use (NUFER)-dairy model. Results showed that milk yield increased by 64% from 1980 to 2010 on average, and the use of concentrate feeds increased by 57% associated with a shift of production from traditional and grassland systems to collective and industrialized systems. At herd level, the N use efficiency (NUE; conversion of N inputs to products) doubled from 7 to 15%, and the P use efficiency (PUE) increased from 10 to 17%, primarily resulting from increased milk yield per cow. In contrast, at the system level, NUE showed a small increase (from 10 to 15%, associated with reduced gaseous losses) while PUE decreased from 46 to 30% due to a large increase in manure discharges. This is attributed to decoupling of feed and dairy production, as the proportion of manure N and P recycled to cropland decreased by 52% and 54%, respectively. Despite this, the average total N loss decreased from 63 to 48gkg(-1) milk, and the average GHG emissions from 1.7 to 1.1kgCO2equivalentkg(-1) milk associated with increased per-cow productivity. However, average P loss increased from 1.4 to 2.8gPkg(-1) milk due to higher discharge rate to wastewater and landfill in collective and industrialized systems. Anyhow, average N and P losses exceeded levels in developed countries. There were large regional variations in nutrient use efficiency, nutrient losses and GHG emissions in China, largely determined by the dairy production structure. Average N losses and GHG emissions per unit of milk showed a negative correlation with production intensification based on the proportion of farms in collective or industrialized systems, while average P losses per unit of milk in different regions showed a positive relationship with intensification. In conclusion, dairy intensification was associated with increased milk yield per cow and reduced average N losses and GHG emissions per unit of milk, but reduced system level PUE and manure recycling contributed to high levels of total N and P losses. Dairy production in China is likely to continue to be intensified as a result of rising milk demand, and significant improvements must be made in manure management to control N and P losses and GHG emissions.

          Related collections

          Author and article information

          Journal
          Sci. Total Environ.
          The Science of the total environment
          Elsevier BV
          1879-1026
          0048-9697
          May 02 2017
          : 598
          Affiliations
          [1 ] Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China.
          [2 ] Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China.
          [3 ] AgResearch Limited, Ruakura Research Centre, Private Bag 3123, Hamilton 3240, New Zealand.
          [4 ] University of Pennsylvania, School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, United States.
          [5 ] Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental Biology, The Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang 050021, Hebei, China. Electronic address: malin1979@sjziam.ac.cn.
          Article
          S0048-9697(17)31009-4
          10.1016/j.scitotenv.2017.04.165
          28482457
          e80911cb-b78a-4243-9c4c-f15c8f77c83a
          History

          Environmental pollution,GHG,Manure management,Nitrogen,Phosphorus

          Comments

          Comment on this article