10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Unsaturated fatty acids selectively induce an inflammatory environment in human endothelial cells

      , , , ,
      The American Journal of Clinical Nutrition
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activation of the vascular endothelium by dietary fatty acids may be among the most critical early events in the development of atherosclerosis. However, the specific effects of fatty acids on inflammatory responses in endothelial cells are not fully understood.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          Atherosclerosis is an inflammatory disease

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers.

            Transcription of endothelial-leukocyte adhesion molecule-1 (E-selectin or ELAM-1), vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1) is induced by the inflammatory cytokines interleukin-1 beta (IL-1 beta) and tumor necrosis factor-alpha (TNF alpha). The positive regulatory domains required for maximal levels of cytokine induction have been defined in the promoters of all three genes. DNA binding studies reveal a requirement for nuclear factor-kappa B (NF-kappa B) and a small group of other transcriptional activators. The organization of the cytokine-inducible element in the E-selectin promoter is remarkably similar to that of the virus-inducible promoter of the human interferon-beta gene in that both promoters require NF-kappa B, activating transcription factor-2 (ATF-2), and high mobility group protein I(Y) for induction. Based on this structural similarity, a model has been proposed for the cytokine-induced E-selectin enhancer that is similar to the stereospecific complex proposed for the interferon-beta gene promoter. In these models, multiple DNA bending proteins facilitate the assembly of higher order complexes of transcriptional activators that interact as a unit with the basal transcriptional machinery. The assembly of unique enhancer complexes from similar sets of transcriptional factors may provide the specificity required to regulate complex patterns of gene expression and correlate with the distinct patterns of expression of the leukocyte adhesion molecules.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activated transcription factor nuclear factor-kappa B is present in the atherosclerotic lesion.

              Nuclear factor-kappa B (NF-kappaB)/Rel transcription factors play an important role in the inducible regulation of a variety of genes involved in the inflammatory and proliferative responses of cells. The present study was designed to elucidate the implication of NF-kappaB/Rel in the pathogenesis of atherosclerosis. Activation of the dimeric NF-kappaB complex is regulated at a posttranslational level and requires the release of the inhibitor protein IkappaB. The newly developed mAb alpha-p65mAb recognizes the IkappaB binding region on the p65 (RelA) DNA binding subunit and therefore selectively reacts with p65 in activated NF-kappaB. Using immunofluorescence and immunohistochemical techniques, activated NF-kappaB was detected in the fibrotic-thickened intima/media and atheromatous areas of the atherosclerotic lesion. Activation of NF-kappaB was identified in smooth muscle cells, macrophages, and endothelial cells. Little or no activated NF-kappaB was detected in vessels lacking atherosclerosis. Electrophoretic mobility shift assays and colocalization of activated NF-kappaB with NF-kappaB target gene expression suggest functional implications for this transcription factor in the atherosclerotic lesion. This study demonstrates the presence of activated NF-kappaB in human atherosclerotic tissue for the first time. Atherosclerosis, characterized by features of chronic inflammation and proliferative processes, may be a paradigm for the involvement of NF-kappaB/Rel in chronic inflammatory disease.
                Bookmark

                Author and article information

                Journal
                The American Journal of Clinical Nutrition
                Oxford University Press (OUP)
                0002-9165
                1938-3207
                January 2002
                January 01 2002
                January 2002
                January 01 2002
                : 75
                : 1
                : 119-125
                Article
                10.1093/ajcn/75.1.119
                11756069
                e80d2c16-5bf1-4a98-b81d-79efb081af36
                © 2002
                History

                Comments

                Comment on this article