22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluorodeoxyglucose-Positron Emission Tomography in the differential diagnosis of early-onset dementia: a prospective, community-based study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The aim of this study was to evaluate the diagnostic accuracy of positron emission tomography (PET) using F 18 fluorodeoxyglucose (FDG) in the differential diagnosis of early-onset Alzheimer's disease (AD) and other dementias in a community-dwelling population.

          Methods

          A prospective sample of 102 individuals presenting consecutively to a primary care centre for examination of suspected early-onset dementing diseases. The mean age of symptom onset of dementia in our patients was 60.06 ± 4.28 years (mean ± 1SD, 95% lower confidence intervals (CI) 54.75, upper 63.37). Patients were evaluated using standard clinical criteria for the diagnosis of dementia. Functional neuroimaging data was obtained and nuclear medicine physicians blind to the clinical diagnosis generated FDG-PET diagnoses. Final clinical diagnoses based on all available data were then established and compared against PET diagnoses.

          Results

          Forty-nine patients received a final clinical diagnosis of early-stage AD (MMSE score 20.97 ± 5.10). There were 29 non-AD demented patients, 11 depressed patients and a miscellaneous group of 13 patients. Among patients with AD, the sensitivity and specificity of FDG-PET was 78% (95% CI: 66–90%) and 81% (95% CI: 68–86%), respectively. The positive likelihood ratio (PLR) for a FDG-PET scan positive for the diagnosis of AD was 4.11 (95% CI: 2.29–7.32) and negative likelihood ratio (NLR) for a negative FDG-PET scan in the absence of AD was 0.27 (95% CI: 0.16–0.46). The pre-test probability was 48% and post-test probability was 79.02%. The specificity of FDG-PET in the differential diagnosis of other dementias, including frontotemporal dementia, was greater than 95%.

          Recruitment methods in this study provide a sample that may be more representative of patients in the general population and indicate that FDG-PET imaging can contribute to the diagnosis of AD in younger adults with major increases in the positive likelihood rates and post-test probability.

          Conclusion

          The high specificity of FDG-PET suggests this technique might help in the diagnosis of frontotemporal dementia and other forms of early-onset dementia.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Diagnostic and statistical manual of mental disorders.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vascular dementia: diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop.

            Criteria for the diagnosis of vascular dementia (VaD) that are reliable, valid, and readily applicable in a variety of settings are urgently needed for both clinical and research purposes. To address this need, the Neuroepidemiology Branch of the National Institute of Neurological Disorders and Stroke (NINDS) convened an International Workshop with support from the Association Internationale pour la Recherche et l'Enseignement en Neurosciences (AIREN), resulting in research criteria for the diagnosis of VaD. Compared with other current criteria, these guidelines emphasize (1) the heterogeneity of vascular dementia syndromes and pathologic subtypes including ischemic and hemorrhagic strokes, cerebral hypoxic-ischemic events, and senile leukoencephalopathic lesions; (2) the variability in clinical course, which may be static, remitting, or progressive; (3) specific clinical findings early in the course (eg, gait disorder, incontinence, or mood and personality changes) that support a vascular rather than a degenerative cause; (4) the need to establish a temporal relationship between stroke and dementia onset for a secure diagnosis; (5) the importance of brain imaging to support clinical findings; (6) the value of neuropsychological testing to document impairments in multiple cognitive domains; and (7) a protocol for neuropathologic evaluations and correlative studies of clinical, radiologic, and neuropsychological features. These criteria are intended as a guide for case definition in neuroepidemiologic studies, stratified by levels of certainty (definite, probable, and possible). They await testing and validation and will be revised as more information becomes available.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET.

              A new diagnostic indicator of FDG PET scan abnormality, based on age-adjusted t statistics and an automated voxel-based procedure, is presented and validated in a large data set comprising 110 normal controls and 395 patients with probable Alzheimer's disease (AD) that were studied in eight participating centers. The effect of differences in spatial resolution of PET scanners was minimized effectively by filtering and masking. In controls FDG uptake declined significantly with age in anterior cingulate and frontolateral perisylvian cortex. In patients with probable AD decline of FDG uptake in posterior cingulate, temporoparietal, and prefrontal association cortex was related to dementia severity. These effects were clearly distinct from age effects in controls, suggesting that the disease process of AD is not related to normal aging. Women with probable AD had significantly more frontal metabolic impairment than men. The new indicator of metabolic abnormality in AD-related regions provided 93% sensitivity and specificity for distinction of mild to moderate probable AD from normals, and 84% sensitivity at 93% specificity for detection of very mild probable AD (defined by Mini Mental Score 24 or better). All regions related to AD severity were already affected in very mild AD, suggesting that all vulnerable areas are affected to a similar degree already at disease onset. Ventromedial frontal cortex was also abnormal. In conclusion, automated analysis of multicenter FDG PET is feasible, provides insights into AD pathophysiology, and can be used potentially as a sensitive biomarker for early AD diagnosis.
                Bookmark

                Author and article information

                Journal
                BMC Neurol
                BMC Neurology
                BioMed Central
                1471-2377
                2009
                12 August 2009
                : 9
                : 41
                Affiliations
                [1 ]Neurodegenerative Disorders Research, 185 York St, Subiaco WA, Australia
                [2 ]Neurosciences Unit, Health Department of Western Australia, Perth WA, Australia
                [3 ]Department of Nuclear Medicine, Royal Perth Hospital, Perth WA, Australia
                [4 ]WA PET/Cyclotron Service, Sir Charles Gairdner Hospital, Perth WA, Australia
                Article
                1471-2377-9-41
                10.1186/1471-2377-9-41
                2736156
                19674446
                e812ddc5-0785-4bdb-860d-4e2fa4a2a936
                Copyright © 2009 Panegyres et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 December 2008
                : 12 August 2009
                Categories
                Research Article

                Neurology
                Neurology

                Comments

                Comment on this article