11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire population. Kidney disease encompasses acute (short-lasting episode) and chronic (developing over years) pathologies both leading to renal failure. Since specific treatments for acute or chronic kidney disease are limited, more than 2 million people a year require dialysis or kidney transplantation. Several recent evidences identified lysosomal proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally found in the lysosomes, exert important functions also in the cytosol and nucleus of cells as well as in the extracellular space, thus participating in a wide range of physiological and pathological processes. Based on their catalytic active site residue, the 15 human cathepsins identified up to now are classified in three different families: serine (cathepsins A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L, O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis, glomerular permeability, endothelial function, and inflammation. Dysregulation of their expression/activity has been associated to the onset and progression of kidney disease. This review summarizes most of the recent findings that highlight the critical role of cathepsins in kidney disease development and progression. A better understanding of the signaling pathways governed by cathepsins in kidney physiopathology may yield novel selective biomarkers or therapeutic targets for developing specific treatments against kidney disease.

          Related collections

          Most cited references131

          • Record: found
          • Abstract: found
          • Article: not found

          Renal fibrosis: new insights into the pathogenesis and therapeutics.

          Youhua Liu (2006)
          Renal fibrosis is the inevitable consequence of an excessive accumulation of extracellular matrix that occurs in virtually every type of chronic kidney disease. The pathogenesis of renal fibrosis is a progressive process that ultimately leads to end-stage renal failure, a devastating disorder that requires dialysis or kidney transplantation. In a simplistic view, renal fibrosis represents a failed wound-healing process of the kidney tissue after chronic, sustained injury. Several cellular pathways, including mesangial and fibroblast activation as well as tubular epithelial-mesenchymal transition, have been identified as the major avenues for the generation of the matrix-producing cells in diseased conditions. Among the many fibrogenic factors that regulate renal fibrotic process, transforming growth factor-beta (TGF-beta) is one that plays a central role. Although defective matrix degradation may contribute to tissue scarring, the exact action and mechanisms of the matrix-degrading enzymes in the injured kidney have become increasingly complicated. Recent discoveries on endogenous antifibrotic factors have evolved novel strategies aimed at antagonizing the fibrogenic action of TGF-beta/Smad signaling. Many therapeutic interventions appear effective in animal models; however, translation of these promising results into humans in the clinical setting remains a daunting task. This mini-review attempts to highlight the recent progress in our understanding of the cellular and molecular pathways leading to renal fibrosis, and discusses the challenges and opportunities in developing therapeutic strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Relation between kidney function, proteinuria, and adverse outcomes.

            The current staging system for chronic kidney disease is based primarily on estimated glomerular filtration rate (eGFR) with lower eGFR associated with higher risk of adverse outcomes. Although proteinuria is also associated with adverse outcomes, it is not used to refine risk estimates of adverse events in this current system. To determine the association between reduced GFR, proteinuria, and adverse clinical outcomes. Community-based cohort study with participants identified from a province-wide laboratory registry that includes eGFR and proteinuria measurements from Alberta, Canada, between 2002 and 2007. There were 920 985 adults who had at least 1 outpatient serum creatinine measurement and who did not require renal replacement treatment at baseline. Proteinuria was assessed by urine dipstick or albumin-creatinine ratio (ACR). All-cause mortality, myocardial infarction, and progression to kidney failure. The majority of individuals (89.1%) had an eGFR of 60 mL/min/1.73 m(2) or greater. Over median follow-up of 35 months (range, 0-59 months), 27 959 participants (3.0%) died. The fully adjusted rate of all-cause mortality was higher in study participants with lower eGFRs or heavier proteinuria. Adjusted mortality rates were more than 2-fold higher among individuals with heavy proteinuria measured by urine dipstick and eGFR of 60 mL/min/1.73 m(2) or greater, as compared with those with eGFR of 45 to 59.9 mL/min/1.73 m(2) and normal protein excretion (rate, 7.2 [95% CI, 6.6-7.8] vs 2.9 [95% CI, 2.7-3.0] per 1000 person-years, respectively; rate ratio, 2.5 [95% CI, 2.3-2.7]). Similar results were observed when proteinuria was measured by ACR (15.9 [95% CI, 14.0-18.1] and 7.0 [95% CI, 6.4-7.6] per 1000 person-years for heavy and absent proteinuria, respectively; rate ratio, 2.3 [95% CI, 2.0-2.6]) and for the outcomes of hospitalization with acute myocardial infarction, end-stage renal disease, and doubling of serum creatinine level. The risks of mortality, myocardial infarction, and progression to kidney failure associated with a given level of eGFR are independently increased in patients with higher levels of proteinuria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute kidney injury-epidemiology, outcomes and economics.

              Acute kidney injury (AKI) is a widespread problem of epidemic status. Compelling evidence indicates that the incidence of AKI is rapidly increasing, particularly among hospitalized patients with acute illness and those undergoing major surgery. This increase might be partially attributable to greater recognition of AKI, improved ascertainment in administrative data and greater sensitivity of consensus diagnostic and classification schemes. Other causes could be an ageing population, increasing incidences of cardiovascular disease, diabetes mellitus and chronic kidney disease (CKD), and an expanding characterization of modifiable risk factors, such as sepsis, administration of contrast media and exposure to nephrotoxins. The sequelae of AKI are severe and characterized by increased risk of short-term and long-term mortality, incident CKD and accelerated progression to end-stage renal disease. AKI-associated mortality is decreasing, but remains unacceptably high. Moreover, the absolute number of patients dying as a result of AKI is increasing as the incidence of the disorder increases, and few proven effective preventative or therapeutic interventions exist. Survivors of AKI, particularly those who remain on renal replacement therapy, often have reduced quality of life and consume substantially greater health-care resources than the general population as a result of longer hospitalizations, unplanned intensive care unit admissions and rehospitalizations.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Dev Biol
                Front Cell Dev Biol
                Front. Cell Dev. Biol.
                Frontiers in Cell and Developmental Biology
                Frontiers Media S.A.
                2296-634X
                19 December 2017
                2017
                : 5
                : 114
                Affiliations
                [1] 1Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II , Naples, Italy
                [2] 2Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, “Défaillance Cardiaque Aigüe et Chronique” , Nancy, France
                [3] 3Université de Lorraine , Nancy, France
                [4] 4Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433 , Nancy, France
                [5] 5CHRU de Nancy, Hôpitaux de Brabois , Nancy, France
                [6] 6Department of Veterinary Medicine and Animal Productions, University of Naples Federico II , Naples, Italy
                [7] 7Institute of Cellular Medicine, Newcastle University , Newcastle upon Tyne, United Kingdom
                Author notes

                Edited by: Andrei Surguchov, University of Kansas Medical Center Research Institute, United States

                Reviewed by: Kamel Laghmani, Centre de Recherche des Cordeliers, INSERM/UPMC/CNRS - U1138, ERL8228, France; Maurizio Renna, University of Cambridge, United Kingdom

                *Correspondence: Anna Moles anna.moles.fernandez@ 123456gmail.com

                This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Cell and Developmental Biology

                †These authors have contributed equally to the work.

                Article
                10.3389/fcell.2017.00114
                5742100
                29312937
                e814af1d-8e16-4327-8a7c-cd24511477e5
                Copyright © 2017 Cocchiaro, De Pasquale, Della Morte, Tafuri, Avallone, Pizard, Moles and Pavone.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 October 2017
                : 07 December 2017
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 156, Pages: 12, Words: 9801
                Categories
                Cell and Developmental Biology
                Mini Review

                cathepsins,acute kidney injury,chronic kidney disease,lysosomal proteases,signaling pathways

                Comments

                Comment on this article