+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Effects of boiling duration in processing of White Paeony Root on its overall quality evaluated by ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry based metabolomics analysis and high performance liquid chromatography quantification

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Boiling processing is commonly used in post-harvest handling of White Paeony Root (WPR), in order to whiten the herbal materials and preserve the bright color, since such WPR is empirically considered to possess a higher quality. The present study was designed to investigate whether and how the boiling processing affects overall quality of WPR. First, an ultra-high performance liquid chromatography quadrupole/time-of-flight mass spectrometry-based metabolomics approach coupled with multivariate statistical analysis was developed to compare the holistic quality of boiled and un-boiled WPR samples. Second, ten major components in WPR samples boiled for different durations were quantitatively determined using high performance liquid chromatography to further explore the effects of boiling time on the holistic quality of WPR, meanwhile the appearance of the processed herbal materials was observed. The results suggested that the boiling processing conspicuously affected the holistic quality of WPR by simultaneously and inconsistently altering the chemical compositions and that short-time boiling processing between 2 and 10 min could both make the WPR bright-colored and improve the contents of major bioactive components, which were not achieved either without boiling or with prolonged boiling. In conclusion, short-term boiling (2–10 min) is recommended for post-harvest handling of WPR.

          Related collections

          Most cited references 15

          • Record: found
          • Abstract: found
          • Article: not found

          Tannins and human health: a review.

          Tannins (commonly referred to as tannic acid) are water-soluble polyphenols that are present in many plant foods. They have been reported to be responsible for decreases in feed intake, growth rate, feed efficiency, net metabolizable energy, and protein digestibility in experimental animals. Therefore, foods rich in tannins are considered to be of low nutritional value. However, recent findings indicate that the major effect of tannins was not due to their inhibition on food consumption or digestion but rather the decreased efficiency in converting the absorbed nutrients to new body substances. Incidences of certain cancers, such as esophageal cancer, have been reported to be related to consumption of tannins-rich foods such as betel nuts and herbal teas, suggesting that tannins might be carcinogenic. However, other reports indicated that the carcinogenic activity of tannins might be related to components associated with tannins rather than tannins themselves. Interestingly, many reports indicated negative association between tea consumption and incidences of cancers. Tea polyphenols and many tannin components were suggested to be anticarcinogenic. Many tannin molecules have also been shown to reduce the mutagenic activity of a number of mutagens. Many carcinogens and/or mutagens produce oxygen-free radicals for interaction with cellular macromolecules. The anticarcinogenic and antimutagenic potentials of tannins may be related to their antioxidative property, which is important in protecting cellular oxidative damage, including lipid peroxidation. The generation of superoxide radicals was reported to be inhibited by tannins and related compounds. The antimicrobial activities of tannins are well documented. The growth of many fungi, yeasts, bacteria, and viruses was inhibited by tannins. We have also found that tannic acid and propyl gallate, but not gallic acid, were inhibitory to foodborne bacteria, aquatic bacteria, and off-flavor-producing microorganisms. Their antimicrobial properties seemed to be associated with the hydrolysis of ester linkage between gallic acid and polyols hydrolyzed after ripening of many edible fruits. Tannins in these fruits thus serve as a natural defense mechanism against microbial infections. The antimicrobial property of tannic acid can also be used in food processing to increase the shelf-life of certain foods, such as catfish fillets. Tannins have also been reported to exert other physiological effects, such as to accelerate blood clotting, reduce blood pressure, decrease the serum lipid level, produce liver necrosis, and modulate immunoresponses. The dosage and kind of tannins are critical to these effects. The aim of this review is to summarize and analyze the vast and sometimes conflicting literature on tannins and to provide as accurately as possible the needed information for assessment of the overall effects of tannins on human health.
            • Record: found
            • Abstract: found
            • Article: not found

            Anti-cancer, anti-diabetic and other pharmacologic and biological activities of penta-galloyl-glucose.

            1, 2, 3, 4, 6-penta-O-galloyl-beta-D-glucose (PGG) is a polyphenolic compound highly enriched in a number of medicinal herbals. Several in vitro and a handful of in vivo studies have shown that PGG exhibits multiple biological activities which implicate a great potential for PGG in the therapy and prevention of several major diseases including cancer and diabetes. Chemically and functionally, PGG appears to be distinct from its constituent gallic acid or tea polyphenols. For anti-cancer activity, three published in vivo preclinical cancer model studies with PGG support promising efficacy to selectively inhibit malignancy without host toxicity. Potential mechanisms include anti-angiogenesis; anti-proliferative actions through inhibition of DNA replicative synthesis, S-phase arrest, and G(1) arrest; induction of apoptosis; anti-inflammation; and anti-oxidation. Putative molecular targets include p53, Stat3, Cox-2, VEGFR1, AP-1, SP-1, Nrf-2, and MMP-9. For anti-diabetic activity, PGG and analogues appear to improve glucose uptake. However, very little is known about the absorption, pharmacokinetics, and metabolism of PGG, or its toxicity profile. The lack of a large quantity of highly pure PGG has been a bottleneck limiting in vivo validation of cancer preventive and therapeutic efficacies in clinically relevant models.
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical profiling of Radix Paeoniae evaluated by ultra-performance liquid chromatography/photo-diode-array/quadrupole time-of-flight mass spectrometry.

              In this study, an ultra-performance liquid chromatography/photo-diode-array/quadrupole time-of-flight mass spectrometry (UPLC-PDA-QTOFMS) based chemical profiling method was established for rapid global quality evaluation of Radix Paeoniae. By virtue of the high resolution, high speed of UPLC and the accurate mass measurement of TOFMS, a total of 40 components including 29 monoterpene glycosides, 8 galloyl glucoses and 3 phenolic compounds were simultaneously separated within 12min, and identified through the matching of empirical molecular formulae with those of published components in the in-house library, and were further elucidated by adjusted lower energy collision-induced dissociation (CID) mass spectra. Among forty components, five monoterpene glycoside sulfonates were identified as novel components. The established method was successfully applied to rapidly and globally compare the quality of Radix Paeoniae Alba and Radix Paeoniae Rubra, two post-harvesting handled products of Radix Paeoniae. Together with paeoniflorin sulfonate, five newly assigned monoterpene glycoside sulfonates were characteristic markers to detect non-official sulfur dioxide gas fumigated Radix Paeoniae Alba samples. It could be concluded that UPLC-PDA-QTOFMS based chemical profiling is a powerful approach for the global quality evaluation of Radix Paeoniae as well as other herbal medicines.

                Author and article information

                Chinese Journal of Natural Medicines
                20 January 2017
                : 15
                : 1
                : 62-70
                1Department of Pharmaceutical Analysis and Metabolomics, Jiangsu Branch of China Academy of Chinese Medical Sciences and Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
                2School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
                Author notes
                *Corresponding author: LI Song-Lin, Tel: 86-25-85639640, E-mail: songlinli64@ ; CHEN Hu-Biao, Tel: 852-34112060, E-mail: hbchen@

                ΔCo-first author

                These authors have no conflict of interest to declare.

                Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
                Funded by: China State Administration of Traditional Chinese Medicine
                Award ID: 201307008-2
                Funded by: National High Technology Research and Development Plan of China (863 Plain)
                Award ID: 2014AA022204
                Funded by: Jiangsu Province Six Talent Project
                Award ID: YY-007
                Funded by: Jiangsu Branch of China Academy of Chinese Medical Science
                Award ID: JSBN1301
                This work was supported by a special fund of China State Administration of Traditional Chinese Medicine (No. 201307008-2), National High echnology Research and Development Plan of China (863 Plain) (No. 2014AA022204), Jiangsu Province Six Talent Project (YY-007) and Jiangsu Branch of China Academy of Chinese Medical Science (No. JSBN1301).


                Comment on this article