36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fundus Autofluorescence and RPE Lipofuscin in Age-Related Macular Degeneration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genes that increase susceptibility to age-related macular degeneration (AMD) have been identified; however, since many individuals carrying these risk alleles do not develop disease, other contributors are involved. One additional factor, long implicated in the pathogenesis of AMD, is the lipofuscin of retinal pigment epithelium (RPE). The fluorophores that constitute RPE lipofuscin also serve as a source of autofluorescence (AF) that can be imaged by confocal laser ophthalmoscopy. The AF originating from lipofuscin is excited by the delivery of short wavelength (SW) light. A second autofluorescence is emitted from the melanin of RPE (and choroid) upon near-infrared (NIR-AF) excitation. SW-AF imaging is currently used in the clinical management of retinal disorders and the advantages of NIR-AF are increasingly recognized. Here we visit the damaging properties of RPE lipofuscin that could be significant when expressed on a background of genetic susceptibility. To advance interpretations of disease-related patterns of fundus AF in AMD, we also consider the photochemical and spectrophotometric features of the lipofuscin compounds responsible for generating the fluorescence emission.

          Related collections

          Most cited references117

          • Record: found
          • Abstract: found
          • Article: not found

          Drusen proteome analysis: an approach to the etiology of age-related macular degeneration.

          Drusen are extracellular deposits that accumulate below the retinal pigment epithelium on Bruch's membrane and are risk factors for developing age-related macular degeneration (AMD). The progression of AMD might be slowed or halted if the formation of drusen could be modulated. To work toward a molecular understanding of drusen formation, we have developed a method for isolating microgram quantities of drusen and Bruch's membrane for proteome analysis. Liquid chromatography tandem MS analyses of drusen preparations from 18 normal donors and five AMD donors identified 129 proteins. Immunocytochemical studies have thus far localized approximately 16% of these proteins in drusen. Tissue metalloproteinase inhibitor 3, clusterin, vitronectin, and serum albumin were the most common proteins observed in normal donor drusen whereas crystallin was detected more frequently in AMD donor drusen. Up to 65% of the proteins identified were found in drusen from both AMD and normal donors. However, oxidative protein modifications were also observed, including apparent crosslinked species of tissue metalloproteinase inhibitor 3 and vitronectin, and carboxyethyl pyrrole protein adducts. Carboxyethyl pyrrole adducts are uniquely generated from the oxidation of docosahexaenoate-containing lipids. By Western analysis they were found to be more abundant in AMD than in normal Bruch's membrane and were found associated with drusen proteins. Carboxymethyl lysine, another oxidative modification, was also detected in drusen. These data strongly support the hypothesis that oxidative injury contributes to the pathogenesis of AMD and suggest that oxidative protein modifications may have a critical role in drusen formation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics.

            To characterize the intrinsic fluorescence (autofluorescence) of the human ocular fundus with regard to its excitation and emission spectra, age relationship, retinal location, and topography, and to identify the dominant fluorophore among the fundus layers. Using a novel fundus spectrophotometer, fluorescence measurements were made at 7 degrees temporal to the fovea and at the fovea in 30 normal subjects and in 3 selected patients. Topographic measurements were made in 3 subjects. Ex vivo measurements of fluorescence of human retinal pigment epithelium (RPE) were obtained and compared to in vivo data. Fundus fluorescence reveals a broad band of emission between 500 and 750 nm, a maximum of approximately 630 nm, and optimal excitation of approximately 510 nm. Exhibiting a significant increase with age, this fluorescence is highest at 7 degrees to 15 degrees from the fovea, shows a well-defined foveal minimum, and decreases toward the periphery. In vivo fluorescence spectra are consistent with those obtained ex vivo on human RPE. Measurements with short wavelength excitation are strongly influenced by ocular media absorption and reveal an additional minor fluorophore in the fovea. Spectral characteristics, correlation with age, topographic distribution, and retinal location between the choriocapillaris and the photoreceptors suggest that the dominant fundus fluorophore is RPE lipofuscin. The minor fluorophore is probably in the neurosensory retina but has not been identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The US twin study of age-related macular degeneration: relative roles of genetic and environmental influences.

              Age-related macular degeneration (AMD) is the leading cause of irreversible blindness among older individuals in many parts of the world. The relative importance of genes and environment in the etiology of this major public health problem is not well understood. To investigate the impact of genetic and environmental factors. Living twins in the National Academy of Sciences-National Research Council World War II Veteran Twin Registry born between 1917 and 1927. Twins were surveyed for the known presence of macular degeneration. Enrolled twins underwent a standardized examination and fundus photography. Age-related macular degeneration evaluation was completed for 840 elderly male twins, 210 monozygotic and 181 dizygotic complete twin pairs, both concordant and discordant for presence or absence of AMD, and 58 singletons. A bivariate twin model incorporating initial screening ascertainment and age effects was employed to partition variation in liability to AMD and signs of maculopathy into additive genetic, common environment, and unique environment components. Heritability of AMD grade and signs of maculopathy based on clinical examination and fundus photographs. Of the 840 twins, 331 had no signs of maculopathy and 241 had early signs, while 162 had intermediate AMD and 106 had advanced AMD. Heritability (additive genetic) estimates were significant for overall AMD grade (0.46) and for intermediate (0.67) and advanced (0.71) AMD. Significant unique environmental proportions of variance were also observed for these AMD variables (0.37, 0.19, and 0.24, respectively). Shared or common environmental contributions were not significant (0.05-0.17). For specific macular drusen and retinal pigment epithelial characteristics, significant genetic (0.26-0.71) and unique environmental (0.28-0.64) proportions of variance were detected. Genetic factors play a substantial role in the etiology of AMD and associated macular characteristics, explaining 46% to 71% of the variation in the overall severity of the disease. Environmental factors unique to each twin also contribute to the occurrence of this disease. This quantification of relative genetic and environmental contributions to the development of AMD should guide future research on this important cause of blindness.
                Bookmark

                Author and article information

                Contributors
                Journal
                101606588
                41233
                J Clin Med
                J Clin Med
                Journal of clinical medicine
                2077-0383
                19 November 2014
                2014
                13 March 2015
                : 3
                : 4
                : 1302-1321
                Affiliations
                [1 ]Department of Ophthalmology, Columbia University Medical Center, 635 W. 165th Street, New York, NY 10032, USA
                [2 ]Department of Pathology and Cell Biology, Columbia University Medical Center, 630 168th Street, New York, NY 10032, USA
                Author notes
                [* ]Author to whom correspondence should be addressed; jrs88@ 123456columbia.edu ; Tel.: +1-212-305-0044
                Article
                NIHMS643547
                10.3390/jcm3041302
                4358814
                25774313
                e820eb47-37e7-4347-ae98-02fb3d17b13a
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                Categories
                Article

                retinal pigment epithelium,bisretinoid,melanin,lipofuscin,fundus autofluorescence,near-infrared fluorescence,short-wavelength fluorescence imaging

                Comments

                Comment on this article