16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Coronary computed tomography angiography with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aims

          To evaluate the feasibility and image quality of coronary computed tomography angiography (CCTA) acquisition with a submillisievert fraction of effective radiation dose using model-based iterative reconstruction (MBIR) for noise reduction.

          Methods and results

          In 42 patients undergoing standard low-dose (100–120 kV; 450–700 mA) and additional ultra-low-dose CCTA (80–100 kV; 150–210 mA) reconstructed with MBIR, segmental image quality was graded on a four-point scale [(i): non-evaluative, (ii): good, (iii): adequate, and (iv): excellent]. Signal-to-noise ratio (SNR) was calculated dividing left main artery (LMA) and right coronary artery (RCA) attenuation by the aortic root noise. Over a wide range of body mass index (18–40 kg/m 2), the estimated median radiation dose exposure was 1.19 mSv [interquartile range (IQR): 1.07–1.30 mSv] for standard and 0.21 mSv (IQR: 0.18–0.23 mSv) for ultra-low-dose CCTA ( P < 0.001). The median image quality score per segment was 3.5 (IQR: 3.0–4.0) in standard CCTA vs. 3.5 (IQR: 2.5–4.0) in ultra-low dose with MBIR ( P = 0.29). Diagnostic image quality (scores 2–4) was found in 98.7 vs. 97.8% coronary segments ( P = 0.36). Introduction of MBIR for ultra-low-dose CCTA resulted in a significant increase in SNR ( P < 0.001) for LMA (from 15 ± 5 to 29 ± 7) and RCA (from 14 ± 4 to 27 ± 6) despite 82% dose reduction.

          Conclusion

          Coronary computed tomography angiography acquisition with diagnostic image quality is feasible at an ultra-low radiation dose of 0.21 mSv, e.g. in the range reported for a postero-anterior and lateral chest X-ray.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          A three-dimensional statistical approach to improved image quality for multislice helical CT.

          Multislice helical computed tomography scanning offers the advantages of faster acquisition and wide organ coverage for routine clinical diagnostic purposes. However, image reconstruction is faced with the challenges of three-dimensional cone-beam geometry, data completeness issues, and low dosage. Of all available reconstruction methods, statistical iterative reconstruction (IR) techniques appear particularly promising since they provide the flexibility of accurate physical noise modeling and geometric system description. In this paper, we present the application of Bayesian iterative algorithms to real 3D multislice helical data to demonstrate significant image quality improvement over conventional techniques. We also introduce a novel prior distribution designed to provide flexibility in its parameters to fine-tune image quality. Specifically, enhanced image resolution and lower noise have been achieved, concurrently with the reduction of helical cone-beam artifacts, as demonstrated by phantom studies. Clinical results also illustrate the capabilities of the algorithm on real patient data. Although computational load remains a significant challenge for practical development, superior image quality combined with advancements in computing technology make IR techniques a legitimate candidate for future clinical applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Model-based iterative reconstruction technique for radiation dose reduction in chest CT: comparison with the adaptive statistical iterative reconstruction technique.

            To prospectively evaluate dose reduction and image quality characteristics of chest CT reconstructed with model-based iterative reconstruction (MBIR) compared with adaptive statistical iterative reconstruction (ASIR). One hundred patients underwent reference-dose and low-dose unenhanced chest CT with 64-row multidetector CT. Images were reconstructed with 50 % ASIR-filtered back projection blending (ASIR50) for reference-dose CT, and with ASIR50 and MBIR for low-dose CT. Two radiologists assessed the images in a blinded manner for subjective image noise, artefacts and diagnostic acceptability. Objective image noise was measured in the lung parenchyma. Data were analysed using the sign test and pair-wise Student's t-test. Compared with reference-dose CT, there was a 79.0 % decrease in dose-length product with low-dose CT. Low-dose MBIR images had significantly lower objective image noise (16.93 ± 3.00) than low-dose ASIR (49.24 ± 9.11, P < 0.01) and reference-dose ASIR images (24.93 ± 4.65, P < 0.01). Low-dose MBIR images were all diagnostically acceptable. Unique features of low-dose MBIR images included motion artefacts and pixellated blotchy appearances, which did not adversely affect diagnostic acceptability. Diagnostically acceptable chest CT images acquired with nearly 80 % less radiation can be obtained using MBIR. MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT images without severely compromising image quality. • Model-based iterative reconstruction (MBIR) creates high-quality low-dose CT images. • MBIR significantly improves image noise and artefacts over adaptive statistical iterative techniques. • MBIR shows greater potential than ASIR for diagnostically acceptable low-dose CT. • The prolonged processing time of MBIR may currently limit its routine use in clinical practice.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cardiac computed tomography: indications, applications, limitations, and training requirements: report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT of the European Society of Cardiology and the European Council of Nuclear Cardiology.

              As a consequence of improved technology, there is growing clinical interest in the use of multi-detector row computed tomography (MDCT) for non-invasive coronary angiography. Indeed, the accuracy of MDCT to detect or exclude coronary artery stenoses has been high in many published studies. This report of a Writing Group deployed by the Working Group Nuclear Cardiology and Cardiac CT (WG 5) of the European Society of Cardiology and the European Council of Nuclear Cardiology summarizes the present state of cardiac CT technology, as well as the currently available data concerning its accuracy and applicability in certain clinical situations. Besides coronary CT angiography, the use of CT for the assessment of cardiac morphology and function, evaluation of perfusion and viability, and analysis of heart valves is discussed. In addition, recommendations for clinical applications of cardiac CT imaging are given and limitations of the technique are described.
                Bookmark

                Author and article information

                Journal
                Eur Heart J
                Eur. Heart J
                eurheartj
                ehj
                European Heart Journal
                Oxford University Press
                0195-668X
                1522-9645
                1 May 2014
                19 February 2014
                19 February 2014
                : 35
                : 17
                : 1131-1136
                Affiliations
                Division of Nuclear Medicine and Cardiac Imaging, University Hospital Zurich , Ramistrasse 100, NUK C 42, CH-8091 Zurich, Switzerland
                Author notes
                [* ]Corresponding author. Tel: +41 44 255 41 96, Fax: +41 44 255 44 14, Email: pak@ 123456usz.ch
                [†]

                These authors contributed equally to this work.

                This paper was guest edited by Prof. Dr Udo P. Sechtem, Chief, Cardiology, Robert Bosch Krankenhaus, udo.sechtem@ 123456rbk.de

                Article
                ehu053
                10.1093/eurheartj/ehu053
                4006092
                24553723
                e821abca-9d79-4393-968b-ee3de55fbd46
                © The Author 2014. Published by Oxford University Press on behalf of the European Society of Cardiology.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 9 July 2013
                : 3 November 2013
                : 12 December 2013
                Categories
                Clinical Research
                Imaging
                Editor's choice

                Cardiovascular Medicine
                ultra-low-dose coronary computed tomography angiography,model-based iterative reconstruction,feasibility

                Comments

                Comment on this article