17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Obesity and type 2 diabetes mellitus drive immune dysfunction, infection development, and sepsis mortality

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Nutrient sensing and inflammation in metabolic diseases.

          The proper functioning of the pathways that are involved in the sensing and management of nutrients is central to metabolic homeostasis and is therefore among the most fundamental requirements for survival. Metabolic systems are integrated with pathogen-sensing and immune responses, and these pathways are evolutionarily conserved. This close functional and molecular integration of the immune and metabolic systems is emerging as a crucial homeostatic mechanism, the dysfunction of which underlies many chronic metabolic diseases, including type 2 diabetes and atherosclerosis. In this Review we provide an overview of several important networks that sense and manage nutrients and discuss how they integrate with immune and inflammatory pathways to influence the physiological and pathological metabolic states in the body.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Obesity Pathogenesis: An Endocrine Society Scientific Statement

            Obesity is among the most common and costly chronic disorders worldwide. Estimates suggest that in the United States obesity affects one-third of adults, accounts for up to one-third of total mortality, is concentrated among lower income groups, and increasingly affects children as well as adults. A lack of effective options for long-term weight reduction magnifies the enormity of this problem; individuals who successfully complete behavioral and dietary weight-loss programs eventually regain most of the lost weight. We included evidence from basic science, clinical, and epidemiological literature to assess current knowledge regarding mechanisms underlying excess body-fat accumulation, the biological defense of excess fat mass, and the tendency for lost weight to be regained. A major area of emphasis is the science of energy homeostasis, the biological process that maintains weight stability by actively matching energy intake to energy expenditure over time. Growing evidence suggests that obesity is a disorder of the energy homeostasis system, rather than simply arising from the passive accumulation of excess weight. We need to elucidate the mechanisms underlying this “upward setting” or “resetting” of the defended level of body-fat mass, whether inherited or acquired. The ongoing study of how genetic, developmental, and environmental forces affect the energy homeostasis system will help us better understand these mechanisms and are therefore a major focus of this statement. The scientific goal is to elucidate obesity pathogenesis so as to better inform treatment, public policy, advocacy, and awareness of obesity in ways that ultimately diminish its public health and economic consequences. This Scientific Statement focuses on factors for which compelling evidence exists that implicates them in the pathogenesis of either the accumulation or maintenance of excess body fat mass.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Immune dysfunction in patients with diabetes mellitus (DM)

              Patients with diabetes mellitus (DM) have infections more often than those without DM. The course of the infections is also more complicated in this patient group. One of the possible causes of this increased prevalence of infections is defects in immunity. Besides some decreased cellular responses in vitro, no disturbances in adaptive immunity in diabetic patients have been described. Different disturbances (low complement factor 4, decreased cytokine response after stimulation) in humoral innate immunity have been described in diabetic patients. However, the clinical relevance of these findings is not clear. Concerning cellular innate immunity most studies show decreased functions (chemotaxis, phagocytosis, killing) of diabetic polymorphonuclear cells and diabetic monocytes/macrophages compared to cells of controls. In general, a better regulation of the DM leads to an improvement of these cellular functions. Furthermore, some microorganisms become more virulent in a high glucose environment. Another mechanism which can lead to the increased prevalence of infections in diabetic patients is an increased adherence of microorganisms to diabetic compared to nondiabetic cells. This has been described for Candida albicans. Possibly the carbohydrate composition of the receptor plays a role in this phenomenon.
                Bookmark

                Author and article information

                Journal
                Journal of Leukocyte Biology
                J Leukoc Biol
                Wiley
                07415400
                September 2018
                September 2018
                August 01 2018
                : 104
                : 3
                : 525-534
                Affiliations
                [1 ]Department of Surgery, Division of Acute Care Surgery; University of Michigan; Ann Arbor Michigan USA
                [2 ]Department of Pathology; University of Michigan; Ann Arbor Michigan USA
                Article
                10.1002/JLB.5VMR0118-021RR
                30066958
                e82e864c-b8aa-412a-a08f-20b117fbf448
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article