9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Functional anatomy of the immunoglobulin heavy chain 3΄ super-enhancer needs not only core enhancer elements but also their unique DNA context

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cis-regulatory elements feature clustered sites for transcription factors, defining core enhancers and have inter-species homology. The mouse IgH 3΄ regulatory region ( 3’RR), a major B-cell super-enhancer, consists of four of such core enhancers, scattered throughout more than 25 kb of packaging ‘junk DNA’, the sequence of which is not conserved but follows a unique palindromic architecture which is conserved in all mammalian species. The 3’RR promotes long-range interactions and potential IgH loops with upstream promoters, controlling class switch recombination (CSR) and somatic hypermutation (SHM). It was thus of interest to determine whether this functional architecture also involves the specific functional structure of the super-enhancer itself, potentially promoted by its symmetric DNA shell. Since many transgenic 3’RR models simply linked core enhancers without this shell, it was also important to compare such a ‘core 3’RR’ (c3’RR) with the intact full-length super-enhancer in an actual endogenous IgH context. Packaging DNA between 3’RR core enhancers proved in fact to be necessary for optimal SHM, CSR and IgH locus expression in plasma cells. This reveals that packaging DNA can matter in the functional anatomy of a super-enhancer, and that precise evaluation of such elements requires full consideration of their global architecture.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism.

          The neonatal FcR (FcRn) is a receptor that protects IgG from catabolism and is important in maintaining high serum Ab levels. A major site of expression of FcRn is vascular endothelial cells where FcRn functions to extend the serum persistence of IgG by recycling internalized IgG back to the surface. Because FcRn is expressed in other tissues, it is unclear whether endothelial cells are the only site of IgG protection. In this study, we used FcRn-deficient mice and specific antiserum to determine the tissue distribution of FcRn in the adult mouse. In addition to its expression in the vascular endothelium of several organs, we found FcRn to be highly expressed in bone marrow-derived cells and professional APCs in different tissues. Experiments using bone marrow chimeras showed that FcRn expression in these cells acted to significantly extend the half-life of serum IgG indicating that in addition to the vascular endothelium, bone marrow-derived phagocytic cells are a major site of IgG homeostasis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genomic deletion of the whole IgH 3' regulatory region (hs3a, hs1,2, hs3b, and hs4) dramatically affects class switch recombination and Ig secretion to all isotypes.

            The immunoglobulin heavy chain locus (IgH) undergoes multiple changes along B-cell differentiation. In progenitor B cells, V(D)J assembly allows expression of μ heavy chains. In mature B cells, class switch recombination may replace the expressed constant (C)μ gene with a downstream C(H) gene. Finally, plasma cell differentiation strongly boosts IgH transcription. How the multiple IgH transcriptional enhancers tune these changes is unclear. Here we demonstrate that deletion of the whole IgH 3' regulatory region (3'RR) allows normal maturation until the stage of IgM/IgD expressing lymphocytes, but nearly abrogates class switch recombination to all C(H) genes. Although plasma cell numbers are unaffected, we reveal the role of the 3'RR into the transcriptional burst normally associated with plasma cell differentiation. Our study shows that transcriptional changes and recombinations occurring after antigen-encounter appear mainly controlled by the 3'RR working as a single functional unit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Localization of the 3' IgH locus elements that effect long-distance regulation of class switch recombination.

              Four transcriptional enhancers lie downstream of the immunoglobulin heavy chain locus: Calpha3'/hs3a, hs1,2, hs3b, and hs4. Although individually weak, these elements have strong transcriptional synergies when combined and they altogether behave as a locus control region. Previous knockout experiments in the 3' region have shown that both hs3a and hs1,2 are dispensable for normal expression and rearrangement of the IgH locus but that their replacement with a transcribed neo gene severely affects class switch recombination. Here we show that even in the absence of a neo gene, joint deletion of the last two 3' enhancers, hs3b and hs4, severely impairs germline transcription and class switching to most isotypes and may in addition affect mu gene expression in resting B cells.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                Nucleic Acids Res
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                02 June 2017
                22 March 2017
                22 March 2017
                : 45
                : 10
                : 5829-5837
                Affiliations
                [1 ]UMR 7276 CNRS and Université de Limoges: Contrôle de la Réponse Immune B et Lymphoprolifération, 2 rue du Dr. Descottes, 87025 Limoges, France
                [2 ]Institut Universitaire de France, Paris, France
                Author notes
                [* ]To whom correspondence should be addressed. Tel: +33 519564200; Fax: +33 555435897; Email: cogne@ 123456unilim.fr . Correspondence may also be addressed to Dr. Sandrine Le Noir. Email: sandrine.le-noir@ 123456unilim.fr
                Article
                gkx203
                10.1093/nar/gkx203
                5449612
                28369649
                e830aaf2-402c-4617-869f-ed4d4562207a
                © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                History
                : 22 March 2017
                : 14 March 2017
                : 27 December 2016
                Page count
                Pages: 9
                Categories
                Gene regulation, Chromatin and Epigenetics

                Genetics
                Genetics

                Comments

                Comment on this article