46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion.

      Journal of the American Society of Nephrology : JASN
      Animals, Apoptosis, Blood Proteins, pharmacology, Caspase 3, Caspase Inhibitors, Caspases, metabolism, Cell Line, Transformed, Creatinine, blood, Disease Models, Animal, Erythropoietin, Humans, Kidney Diseases, drug therapy, pathology, prevention & control, Kidney Tubules, Male, Oxidative Stress, drug effects, Phosphorylation, Protein-Serine-Threonine Kinases, Proto-Oncogene Proteins, Proto-Oncogene Proteins c-akt, Rats, Rats, Wistar, Reperfusion Injury

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Erythropoietin (EPO) is upregulated by hypoxia and causes proliferation and differentiation of erythroid progenitors in the bone marrow through inhibition of apoptosis. EPO receptors are expressed in many tissues, including the kidney. Here it is shown that a single systemic administration of EPO either preischemia or just before reperfusion prevents ischemia-reperfusion injury in the rat kidney. Specifically, EPO (300 U/kg) reduced glomerular dysfunction and tubular injury (biochemical and histologic assessment) and prevented caspase-3, -8, and -9 activation in vivo and reduced apoptotic cell death. In human (HK-2) proximal tubule epithelial cells, EPO attenuated cell death in response to oxidative stress and serum starvation. EPO reduced DNA fragmentation and prevented caspase-3 activation, with upregulation of Bcl-X(L) and XIAP. The antiapoptotic effects of EPO were dependent on JAK2 signaling and the phosphorylation of Akt by phosphatidylinositol 3-kinase. These findings may have major implications in the treatment of acute renal tubular damage.

          Related collections

          Author and article information

          Comments

          Comment on this article