11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Integration algorithms of elastoplasticity for ceramic powder compaction

      Preprint
      , , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Inelastic deformation of ceramic powders (and of a broad class of rock-like and granular materials), can be described with the yield function proposed by Bigoni and Piccolroaz (2004, Yield criteria for quasibrittle and frictional materials. Int. J. Solids and Structures, 41, 2855-2878). This yield function is not defined outside the yield locus, so that 'gradient-based' integration algorithms of elastoplasticity cannot be directly employed. Therefore, we propose two ad hoc algorithms: (i.) an explicit integration scheme based on a forward Euler technique with a 'centre-of-mass' return correction and (ii.) an implicit integration scheme based on a 'cutoff-substepping' return algorithm. Iso-error maps and comparisons of the results provided by the two algorithms with two exact solutions (the compaction of a ceramic powder against a rigid spherical cup and the expansion of a thick spherical shell made up of a green body), show that both the proposed algorithms perform correctly and accurately.

          Related collections

          Author and article information

          Journal
          24 April 2014
          Article
          10.1016/j.jeurceramsoc.2014.01.041
          1404.6460
          e835bb8c-1451-4170-9b41-3ef754332fd5

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          21 pages. Journal of the European Ceramic Society, 2014
          cond-mat.soft

          Comments

          Comment on this article