17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Activated immune cells undergo a metabolic switch to aerobic glycolysis akin to the Warburg effect, presenting a potential therapeutic target in autoimmune disease. Dimethyl fumarate, a derivative of the Krebs cycle intermediate fumarate, is an immunomodulatory drug used to treat multiple sclerosis and psoriasis. Although its therapeutic mechanism remains uncertain, it covalently modifies cysteine residues in a process termed "succination." Here, we show that dimethyl fumarate succinates and inactivates the catalytic cysteine of the glycolytic enzyme GAPDH both in vitro and in vivo. It thereby downregulates aerobic glycolysis in activated myeloid and lymphoid cells, which mediates its anti-inflammatory effects. Our findings provide mechanistic insight into immune modulation by dimethyl fumarate and represent a proof of concept that aerobic glycolysis is a therapeutic target in autoimmunity.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Empirical Statistical Model To Estimate the Accuracy of Peptide Identifications Made by MS/MS and Database Search

          We present a statistical model to estimate the accuracy of peptide assignments to tandem mass (MS/MS) spectra made by database search applications such as SEQUEST. Employing the expectation maximization algorithm, the analysis learns to distinguish correct from incorrect database search results, computing probabilities that peptide assignments to spectra are correct based upon database search scores and the number of tryptic termini of peptides. Using SEQUEST search results for spectra generated from a sample of known protein components, we demonstrate that the computed probabilities are accurate and have high power to discriminate between correctly and incorrectly assigned peptides. This analysis makes it possible to filter large volumes of MS/MS database search results with predictable false identification error rates and can serve as a common standard by which the results of different research groups are compared.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation.

            Complex interplay between T helper (Th) cells and macrophages contributes to the formation and progression of atherosclerotic plaques. While Th1 cytokines promote inflammatory activation of lesion macrophages, Th2 cytokines attenuate macrophage-mediated inflammation and enhance their repair functions. In spite of its biologic importance, the biochemical and molecular basis of how Th2 cytokines promote maturation of anti-inflammatory macrophages is not understood. We show here that in response to interleukin-4 (IL-4), signal transducer and activator of transcription 6 (STAT6) and PPARgamma-coactivator-1beta (PGC-1beta) induce macrophage programs for fatty acid oxidation and mitochondrial biogenesis. Transgenic expression of PGC-1beta primes macrophages for alternative activation and strongly inhibits proinflammatory cytokine production, whereas inhibition of oxidative metabolism or RNAi-mediated knockdown of PGC-1beta attenuates this immune response. These data elucidate a molecular pathway that directly links mitochondrial oxidative metabolism to the anti-inflammatory program of macrophage activation, suggesting a potential role for metabolic therapies in treating atherogenic inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function.

              CD4 T cell activation leads to proliferation and differentiation into effector (Teff) or regulatory (Treg) cells that mediate or control immunity. While each subset prefers distinct glycolytic or oxidative metabolic programs in vitro, requirements and mechanisms that control T cell glucose uptake and metabolism in vivo are uncertain. Despite expression of multiple glucose transporters, Glut1 deficiency selectively impaired metabolism and function of thymocytes and Teff. Resting T cells were normal until activated, when Glut1 deficiency prevented increased glucose uptake and glycolysis, growth, proliferation, and decreased Teff survival and differentiation. Importantly, Glut1 deficiency decreased Teff expansion and the ability to induce inflammatory disease in vivo. Treg cells, in contrast, were enriched in vivo and appeared functionally unaffected and able to suppress Teff, irrespective of Glut1 expression. These data show a selective in vivo requirement for Glut1 in metabolic reprogramming of CD4 T cell activation and Teff expansion and survival. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                April 26 2018
                April 27 2018
                April 27 2018
                March 29 2018
                : 360
                : 6387
                : 449-453
                Article
                10.1126/science.aan4665
                5924419
                29599194
                e83a330b-946c-4811-9239-5ee1b3014dfe
                © 2018

                http://www.sciencemag.org/about/science-licenses-journal-article-reuse

                History

                Comments

                Comment on this article