22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Endometrial Intracrinology: Oestrogens, Androgens and Endometrial Disorders

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peripheral tissue metabolism of steroids (intracrinology) is now accepted as a key way in which tissues, such as the endometrium, can utilise inactive steroids present in the blood to respond to local physiological demands and ‘fine-tune’ the activation or inhibition of steroid hormone receptor-dependent processes. Expression of enzymes that play a critical role in the activation and inactivation of bioactive oestrogens (E1, E2) and androgens (A4, T, DHT), as well as expression of steroid hormone receptors, has been detected in endometrial tissues and cells recovered during the menstrual cycle. There is robust evidence that increased expression of aromatase is important for creating a local microenvironment that can support a pregnancy. Measurement of intra-tissue concentrations of steroids using liquid chromatography–tandem mass spectrometry has been important in advancing our understanding of a role for androgens in the endometrium, acting both as active ligands for the androgen receptor and as substrates for oestrogen biosynthesis. The emergence of intracrinology, associated with disordered expression of key enzymes such as aromatase, in the aetiology of common women’s health disorders such as endometriosis and endometrial cancer has prompted renewed interest in the development of drugs targeting these pathways, opening up new opportunities for targeted therapies and precision medicine.

          Related collections

          Most cited references102

          • Record: found
          • Abstract: found
          • Article: not found

          Natural killer cells and pregnancy.

          The fetus is considered to be an allograft that, paradoxically, survives pregnancy despite the laws of classical transplantation immunology. There is no direct contact of the mother with the embryo, only with the extraembryonic placenta as it implants in the uterus. No convincing evidence of uterine maternal T-cell recognition of placental trophoblast cells has been found, but instead, there might be maternal allorecognition mediated by uterine natural killer cells that recognize unusual fetal trophoblast MHC ligands.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Androgen production in women.

            To describe the sources, production rates, circulating concentrations, and regulatory mechanisms of the major androgen precursors and androgens in women. Review of the major published literature. Quantitatively, women secrete greater amounts of androgen than of estrogen. The major circulating steroids generally classified as androgens include dehydroepiandrosterone sulphate (DHEAS), dehydroepiandrosterone (DHEA), androstenedione (A), testosterone (T), and dihydrotestosterone in descending order of serum concentration, though only the latter two bind the androgen receptor. The other three steroids are better considered as pro-androgens. Dehydroepiandrosterone is primarily an adrenal product, regulated by adrenocorticotropic hormone (ACTH) and acting as a precursor for the peripheral synthesis of more potent androgens. Dehydroepiandrosterone is produced by both the ovary and adrenal, as well as being derived from circulating DHEAS. Androstenedione and testosterone are products of the ovary and the adrenal. Testosterone circulates both in its free form, and bound to protein including albumin and sex steroid hormone-binding globulin (SHBG), the levels of which are an important determinant of free testosterone concentration. The postmenopausal ovary is an androgen-secreting organ and the levels of testosterone are not directly influenced by the menopausal transition or the occurrence of menopause. Dihydrotestosterone (DHT) is primarily a peripheral product of testosterone metabolism. Severe androgen deficiency occurs in hypopituitarism, but other causes may lead to androgen deficiency, including Addison's disease, corticosteroid therapy, chronic illness, estrogen replacement (leads to elevated SHBG and, therefore, low free testosterone), premenopausal ovarian failure, or oophorectomy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Regulation of Steroid Action by Sulfation and Desulfation

              Steroid sulfation and desulfation are fundamental pathways vital for a functional vertebrate endocrine system. After biosynthesis, hydrophobic steroids are sulfated to expedite circulatory transit. Target cells express transmembrane organic anion-transporting polypeptides that facilitate cellular uptake of sulfated steroids. Once intracellular, sulfatases hydrolyze these steroid sulfate esters to their unconjugated, and usually active, forms. Because most steroids can be sulfated, including cholesterol, pregnenolone, dehydroepiandrosterone, and estrone, understanding the function, tissue distribution, and regulation of sulfation and desulfation processes provides significant insights into normal endocrine function. Not surprisingly, dysregulation of these pathways is associated with numerous pathologies, including steroid-dependent cancers, polycystic ovary syndrome, and X-linked ichthyosis. Here we provide a comprehensive examination of our current knowledge of endocrine-related sulfation and desulfation pathways. We describe the interplay between sulfatases and sulfotransferases, showing how their expression and regulation influences steroid action. Furthermore, we address the role that organic anion-transporting polypeptides play in regulating intracellular steroid concentrations and how their expression patterns influence many pathologies, especially cancer. Finally, the recent advances in pharmacologically targeting steroidogenic pathways will be examined.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                22 October 2018
                October 2018
                : 19
                : 10
                : 3276
                Affiliations
                Centre for Inflammation Research, The University of Edinburgh, EH16 4TJ Edinburgh, UK; d.a.gibson@ 123456ed.ac.uk (D.A.G.); ioannis.simitsidellis@ 123456ed.ac.uk (I.S.); f.collins@ 123456ed.ac.uk (F.C.)
                Author notes
                [* ]Correspondence: p.saunders@ 123456ed.ac.uk ; Tel.: +44-131-242-6388
                Author information
                https://orcid.org/0000-0002-9949-1983
                Article
                ijms-19-03276
                10.3390/ijms19103276
                6214123
                30360364
                e843cf27-99a9-47cd-afa2-b9f1dba349c1
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 30 August 2018
                : 15 October 2018
                Categories
                Review

                Molecular biology
                decidualisation,oestradiol,aromatase,testosterone,dehydroepiandrosterone (dhea),endometriosis,endometrial cancer,sulfatase

                Comments

                Comment on this article