18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Beta-tricalcium phosphate granules improve osteogenesis in vitro and establish innovative osteo-regenerators for bone tissue engineering in vivo

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The drawbacks of traditional bone-defect treatments have prompted the exploration of bone tissue engineering. This study aimed to explore suitable β-tricalcium phosphate (β-TCP) granules for bone regeneration and identify an efficient method to establish β-TCP-based osteo-regenerators. β-TCP granules with diameters of 1 mm and 1–2.5 mm were evaluated in vitro. The β-TCP granules with superior osteogenic properties were used to establish in vivo bioreactors, referred to as osteo-regenerators, which were fabricated using two different methods. Improved proliferation of bone mesenchymal stem cells (BMSCs), glucose consumption and ALP activity were observed for 1–2.5 mm β-TCP compared with 1-mm granules (P < 0.05). In addition, BMSCs incubated with 1–2.5 mm β-TCP expressed significantly higher levels of the genes for runt-related transcription factor-2, alkaline phosphatase, osteocalcin, osteopontin, and collagen type-1 and the osteogenesis-related proteins alkaline phosphatase, collagen type-1 and runt-related transcription factor-2 compared with BMSCs incubated with 1 mm β-TCP (P < 0.05). Fluorochrome labelling, micro-computed tomography and histological staining analyses indicated that the osteo-regenerator with two holes perforating the femur promoted significantly greater bone regeneration compared with the osteo-regenerator with a periosteum incision (P < 0.05). This study provides an alternative to biofunctionalized bioreactors that exhibits improved osteogenesis.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Recent advances in bone tissue engineering scaffolds.

          Bone disorders are of significant concern due to increase in the median age of our population. Traditionally, bone grafts have been used to restore damaged bone. Synthetic biomaterials are now being used as bone graft substitutes. These biomaterials were initially selected for structural restoration based on their biomechanical properties. Later scaffolds were engineered to be bioactive or bioresorbable to enhance tissue growth. Now scaffolds are designed to induce bone formation and vascularization. These scaffolds are often porous, made of biodegradable materials that harbor different growth factors, drugs, genes, or stem cells. In this review, we highlight recent advances in bone scaffolds and discuss aspects that still need to be improved. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Bone regeneration: current concepts and future directions

            Bone regeneration is a complex, well-orchestrated physiological process of bone formation, which can be seen during normal fracture healing, and is involved in continuous remodelling throughout adult life. However, there are complex clinical conditions in which bone regeneration is required in large quantity, such as for skeletal reconstruction of large bone defects created by trauma, infection, tumour resection and skeletal abnormalities, or cases in which the regenerative process is compromised, including avascular necrosis, atrophic non-unions and osteoporosis. Currently, there is a plethora of different strategies to augment the impaired or 'insufficient' bone-regeneration process, including the 'gold standard' autologous bone graft, free fibula vascularised graft, allograft implantation, and use of growth factors, osteoconductive scaffolds, osteoprogenitor cells and distraction osteogenesis. Improved 'local' strategies in terms of tissue engineering and gene therapy, or even 'systemic' enhancement of bone repair, are under intense investigation, in an effort to overcome the limitations of the current methods, to produce bone-graft substitutes with biomechanical properties that are as identical to normal bone as possible, to accelerate the overall regeneration process, or even to address systemic conditions, such as skeletal disorders and osteoporosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Engineering principles of clinical cell-based tissue engineering.

              Tissue engineering is a rapidly evolving discipline that seeks to repair, replace, or regenerate specific tissues or organs by translating fundamental knowledge in physics, chemistry, and biology into practical and effective materials, devices, systems, and clinical strategies. Stem cells and progenitors that are capable of forming new tissue with one or more connective tissue phenotypes are available from many adult tissues and are defined as connective tissue progenitors. There are four major cell-based tissue-engineering strategies: (1) targeting local connective tissue progenitors where new tissue is desired, (2) transplanting autogenous connective tissue progenitors, (3) transplanting culture-expanded or modified connective tissue progenitors, and (4) transplanting fully formed tissue generated in vitro or in vivo. Stem cell function is controlled by changes in stem cell activation and self-renewal or by changes in the proliferation, migration, differentiation, or survival of the progeny of stem cell activation, the downstream progenitor cells. Three-dimensional porous scaffolds promote new tissue formation by providing a surface and void volume that promotes the attachment, migration, proliferation, and desired differentiation of connective tissue progenitors throughout the region where new tissue is needed. Critical variables in scaffold design and function include the bulk material or materials from which it is made, the three-dimensional architecture, the surface chemistry, the mechanical properties, the initial environment in the area of the scaffold, and the late scaffold environment, which is often determined by degradation characteristics. Local presentation or delivery of bioactive molecules can change the function of connective tissue progenitors (activation, proliferation, migration, differentiation, or survival) in a manner that results in new or enhanced local tissue formation. All cells require access to substrate molecules (oxygen, glucose, and amino acids). A balance between consumption and local delivery of these substrates is needed if cells are to survive. Transplanted cells are particularly vulnerable. Theoretical calculations can be used to explore the relationships among cell density, diffusion distance, and cell viability within a graft and to design improved strategies for transplantation of connective tissue progenitors. Rational strategies for tissue engineering seek to optimize new tissue formation through the logical selection of conditions that modulate the performance of connective tissue progenitors in a graft site to produce a desired tissue. This increasingly involves strategies that combine cells, matrices, inductive stimuli, and techniques that enhance the survival and performance of local or transplanted connective tissue progenitors.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                22 March 2016
                2016
                : 6
                : 23367
                Affiliations
                [1 ]Department of Orthopaedic, Xijing Hospital, Fourth Military Medical University , Xi’an, Shaanxi, 710032, P.R. China
                [2 ]Department of Oncology, Xijing Hospital, Fourth Military Medical University , Xi’an, Shaanxi, 710032, P.R. China
                [3 ]State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University , Xi’an 710054, China
                [4 ]Shanghai Bio-Lu Biomaterials Co., Ltd. , Shanghai, 201114, P.R. China
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep23367
                10.1038/srep23367
                4802206
                27000963
                e8442a0f-272d-43f9-b57c-593bc72f3106
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 21 December 2015
                : 03 March 2016
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article