8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insights Into the Bifunctional Aphidicolan-16-ß-ol Synthase Through Rapid Biomolecular Modeling Approaches

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Diterpene synthases catalyze complex, multi-step C-C coupling reactions thereby converting the universal, aliphatic precursor geranylgeranyl diphosphate into diverse olefinic macrocylces that form the basis for the structural diversity of the diterpene natural product family. Since catalytically relevant crystal structures of diterpene synthases are scarce, homology based biomolecular modeling techniques offer an alternative route to study the enzyme's reaction mechanism. However, precise identification of catalytically relevant amino acids is challenging since these models require careful preparation and refinement techniques prior to substrate docking studies. Targeted amino acid substitutions in this protein class can initiate premature quenching of the carbocation centered reaction cascade. The structural characterization of those alternative cyclization products allows for elucidation of the cyclization reaction cascade and provides a new source for complex macrocyclic synthons. In this study, new insights into structure and function of the fungal, bifunctional Aphidicolan-16-ß-ol synthase were achieved using a simplified biomolecular modeling strategy. The applied refinement methodologies could rapidly generate a reliable protein-ligand complex, which provides for an accurate in silico identification of catalytically relevant amino acids. Guided by our modeling data, ACS mutations lead to the identification of the catalytically relevant ACS amino acid network I626, T657, Y658, A786, F789, and Y923. Moreover, the ACS amino acid substitutions Y658L and D661A resulted in a premature termination of the cyclization reaction cascade en-route from syn-copalyl diphosphate to Aphidicolan-16-ß-ol. Both ACS mutants generated the diterpene macrocycle syn-copalol and a minor, non-hydroxylated labdane related diterpene, respectively. Our biomolecular modeling and mutational studies suggest that the ACS substrate cyclization occurs in a spatially restricted location of the enzyme's active site and that the geranylgeranyl diphosphate derived pyrophosphate moiety remains in the ACS active site thereby directing the cyclization process. Our cumulative data confirm that amino acids constituting the G-loop of diterpene synthases are involved in the open to the closed, catalytically active enzyme conformation. This study demonstrates that a simple and rapid biomolecular modeling procedure can predict catalytically relevant amino acids. The approach reduces computational and experimental screening efforts for diterpene synthase structure-function analyses.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Engineering BioBrick vectors from BioBrick parts

          Background The underlying goal of synthetic biology is to make the process of engineering biological systems easier. Recent work has focused on defining and developing standard biological parts. The technical standard that has gained the most traction in the synthetic biology community is the BioBrick standard for physical composition of genetic parts. Parts that conform to the BioBrick assembly standard are BioBrick standard biological parts. To date, over 2,000 BioBrick parts have been contributed to, and are available from, the Registry of Standard Biological Parts. Results Here we extended the same advantages of BioBrick standard biological parts to the plasmid-based vectors that are used to provide and propagate BioBrick parts. We developed a process for engineering BioBrick vectors from BioBrick parts. We designed a new set of BioBrick parts that encode many useful vector functions. We combined the new parts to make a BioBrick base vector that facilitates BioBrick vector construction. We demonstrated the utility of the process by constructing seven new BioBrick vectors. We also successfully used the resulting vectors to assemble and propagate other BioBrick standard biological parts. Conclusion We extended the principles of part reuse and standardization to BioBrick vectors. As a result, myriad new BioBrick vectors can be readily produced from all existing and newly designed BioBrick parts. We invite the synthetic biology community to (1) use the process to make and share new BioBrick vectors; (2) expand the current collection of BioBrick vector parts; and (3) characterize and improve the available collection of BioBrick vector parts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bacterial terpene cyclases.

            Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induced-fit mechanism in class I terpene cyclases.

              We present crystallographic and functional data of selina-4(15),7(11)-diene synthase (SdS) from Streptomyces pristinaespiralis in its open and closed (ligand-bound) conformation. We could identify an induced-fit mechanism by elucidating a rearrangement of the G1/2 helix-break motif upon substrate binding. This rearrangement highlights a novel effector triad comprising the pyrophosphate sensor Arg178, the linker Asp181, and the effector Gly182-O. This structural motif is strictly conserved in class I terpene cyclases from bacteria, fungi, and plants, including epi-isozizaene synthase (3KB9), aristolochene synthase (4KUX), bornyl diphosphate synthase (1N20), limonene synthase (2ONG), 5-epi-aristolochene synthase (5EAT), and taxa-4(5),11(12)-diene synthase (3P5R). An elaborate structure-based mutagenesis in combination with analysis of the distinct product spectra confirmed the mechanistic models of carbocation formation and stabilization in SdS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Chem
                Front Chem
                Front. Chem.
                Frontiers in Chemistry
                Frontiers Media S.A.
                2296-2646
                10 April 2018
                2018
                : 6
                : 101
                Affiliations
                Werner Siemens Chair of Synthetic Biotechnology, Department of Chemistry, Technical University of Munich , Munich, Germany
                Author notes

                Edited by: Daniela Schuster, Paracelsus Medizinische Privatuniversität, Salzburg, Austria

                Reviewed by: Victor Guallar Guallar, Barcelona Supercomputing Center, Spain; Dharmendra Kumar Yadav, Gachon University of Medicine and Science, South Korea; Arnout Voet, KU Leuven, Belgium

                *Correspondence: Monika Fuchs monika.fuchs@ 123456tum.de
                Thomas B. Brück brueck@ 123456tum.de

                This article was submitted to Medicinal and Pharmaceutical Chemistry, a section of the journal Frontiers in Chemistry

                Article
                10.3389/fchem.2018.00101
                5902962
                e8494b4b-9667-4e0a-91bc-7907ff53db3e
                Copyright © 2018 Hirte, Meese, Mertz, Fuchs and Brück.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 January 2018
                : 20 March 2018
                Page count
                Figures: 7, Tables: 1, Equations: 0, References: 51, Pages: 10, Words: 6910
                Funding
                Funded by: Bundesministerium für Bildung und Forschung 10.13039/501100002347
                Award ID: 031A305A
                Categories
                Chemistry
                Original Research

                homology modeling,aphidicolin,diterpene,diterpene synthase,homology model refinement

                Comments

                Comment on this article