2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Optional Crystallization Firing on the Adhesion of Zirconia-Reinforced Lithium Silicate before and after Aging

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study proposed to evaluate the influence of the crystallization firing process and the hydrothermal degradation on the bond strength between different reinforced glass-ceramics and resin cement. Material and Methods: zirconia-reinforced lithium silicate (ZLS) and lithium disilicate (LD) were divided into six groups according to aging simulation (baseline or after thermocycling) and restorative approach (ZLS without firing; ZLS with firing; LD with firing). ZLS and LD surfaces were etched with 5% hydrofluoric acid for 30 s and 20 s, respectively, and then received a layer of silane coupling agent (Monobond-N). Then, cylinders of resin cement (1 mm diameter × 2 mm height) were bonded onto their surfaces. The baseline samples were immersed in distilled water for 24 h before the microshear bond strength (µSBS) test, while half of the specimens were tested after 6000 cycles of thermocycling aging. The types of failures were analyzed through stereomicroscopic and scanning electron microscope. The failure modes were classified as adhesive, predominantly adhesive, cohesive in ceramic, or cohesive in cement. The µSBS data were analyzed by two-way ANOVA and Tukey’s test. A restorative approach (p = 0.000) and aging (p = 0.000) affected the bond strength. The highest bond-strength values were observed in the ZLS without the optional crystallization firing. The most frequent failures were adhesive and predominantly adhesive. The cementation of zirconia-reinforced lithium silicate without the optional crystallization firing process leads to high bond-strength values with resin cement.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Thermal cycling procedures for laboratory testing of dental restorations.

          Exposure of restorations in extracted teeth to cyclic thermal fluctuations to simulate one of the many factors in the oral environment has been common in many tracer penetration, marginal gap and bond strength laboratory tests. Temperature changes used have rarely been substantiated with temperature measurements made in vivo and vary considerably between reports. Justification and standardization of regimen are required. An assessment of reports describing temperature changes of teeth in vivo is followed by an analysis of 130 studies of laboratory thermal cycling of teeth by 99 first authors selected from 25 journals. A clinically relevant thermal cycling regimen was derived from the in vivo information, and is suggested as a benchmark standard. Variation of regimens used was large, making comparison of reports difficult. Reports of testing the effects of thermal cycling were often contradictory, but generally leakage increased with thermal stress, although it has never been demonstrated that cyclic testing is relevant to clinical failures. However, should this be done, the standard cyclic regimen defined is: 35 degrees C (28 s), 15 degrees C (2 s), 35 degrees C (28 s), 45 degrees C (2 s). No evidence of the number of cycles likely to be experienced in vivo was found and this requires investigation, but a provisional estimate of approximately 10,000 cycles per year is suggested. Thermal stressing of restoration interfaces is only of value when the initial bond is already known to be reliable. This is not the case for most current restorative materials.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel Zirconia Materials in Dentistry

            Zirconias, the strongest of the dental ceramics, are increasingly being fabricated in monolithic form for a range of clinical applications. Y-TZP (yttria-stabilized tetragonal zirconia polycrystal) is the most widely used variant. However, current Y-TZP ceramics on the market lack the aesthetics of competitive glass-ceramics and are therefore somewhat restricted in the anterior region. This article reviews the progressive development of currently available and next-generation zirconias, representing a concerted drive toward greater translucency while preserving adequate strength and toughness. Limitations of efforts directed toward this end are examined, such as reducing the content of light-scattering alumina sintering aid or incorporating a component of optically isotropic cubic phase into the tetragonal structure. The latest fabrication routes based on refined starting powders and dopants, with innovative sintering protocols and associated surface treatments, are described. The need to understand the several, often complex, mechanisms of long-term failure in relation to routine laboratory test data is presented as a vital step in bridging the gaps among material scientist, dental manufacturer, and clinical provider.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aspects of silane coupling agents and surface conditioning in dentistry: an overview.

              To give an overview of aspects of silane coupling agents and surface conditioning in dentistry.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                COATED
                Coatings
                Coatings
                MDPI AG
                2079-6412
                December 2022
                December 06 2022
                : 12
                : 12
                : 1904
                Article
                10.3390/coatings12121904
                e85f6f8c-8ca3-42a6-9b29-cc8c8d87b29a
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article