18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe

      , , , ,
      Journal of Ecology
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization.

          The influence of pH on the relative importance of the two principal decomposer groups in soil, fungi and bacteria, was investigated along a continuous soil pH gradient at Hoosfield acid strip at Rothamsted Research in the United Kingdom. This experimental location provides a uniform pH gradient, ranging from pH 8.3 to 4.0, within 180 m in a silty loam soil on which barley has been continuously grown for more than 100 years. We estimated the importance of fungi and bacteria directly by measuring acetate incorporation into ergosterol to measure fungal growth and leucine and thymidine incorporation to measure bacterial growth. The growth-based measurements revealed a fivefold decrease in bacterial growth and a fivefold increase in fungal growth with lower pH. This resulted in an approximately 30-fold increase in fungal importance, as indicated by the fungal growth/bacterial growth ratio, from pH 8.3 to pH 4.5. In contrast, corresponding effects on biomass markers for fungi (ergosterol and phospholipid fatty acid [PLFA] 18:2omega6,9) and bacteria (bacterial PLFAs) showed only a two- to threefold difference in fungal importance in the same pH interval. The shift in fungal and bacterial importance along the pH gradient decreased the total carbon mineralization, measured as basal respiration, by only about one-third, possibly suggesting functional redundancy. Below pH 4.5 there was universal inhibition of all microbial variables, probably derived from increased inhibitory effects due to release of free aluminum or decreasing plant productivity. To investigate decomposer group importance, growth measurements provided significantly increased sensitivity compared with biomass-based measurements.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecosystem stability and compensatory effects in the Inner Mongolia grassland.

            Numerous studies have suggested that biodiversity reduces variability in ecosystem productivity through compensatory effects; that is, a species increases in its abundance in response to the reduction of another in a fluctuating environment. But this view has been challenged on several grounds. Because most studies have been based on artificially constructed grasslands with short duration, long-term studies of natural ecosystems are needed. On the basis of a 24-year study of the Inner Mongolia grassland, here we present three key findings. First, that January-July precipitation is the primary climatic factor causing fluctuations in community biomass production; second, that ecosystem stability (conversely related to variability in community biomass production) increases progressively along the hierarchy of organizational levels (that is, from species to functional group to whole community); and finally, that the community-level stability seems to arise from compensatory interactions among major components at both species and functional group levels. From a hierarchical perspective, our results corroborate some previous findings of compensatory effects. Undisturbed mature steppe ecosystems seem to culminate with high biodiversity, productivity and ecosystem stability concurrently. Because these relationships are correlational, further studies are necessary to verify the causation among these factors. Our study provides new insights for better management and restoration of the rapidly degrading Inner Mongolia grassland.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The maturity index: an ecological measure of environmental disturbance based on nematode species composition

              Nematode assemblages constitute a potential instrument for assessing the quality of submersed, temporarily submersed, and terrestrial soils and for the development of an ecological typology and biomonitoring system. Interpretation of physical or pollution-induced disturbances has hitherto mainly been based on changes in diversity, dominance patterns or percentage of dorylaimids (Adenophorea). The maturity index, based on the nematode fauna, is proposed as a gauge of the condition of the soil ecosystem. Values on a coloniser/persister scale are given for nematodes that occur in The Netherlands. The possibilities of the use of this index are demonstrated by a retrospective interpretation of some literature data. The use of nematodes in environmental studies is discussed.
                Bookmark

                Author and article information

                Journal
                Journal of Ecology
                J Ecol
                Wiley-Blackwell
                00220477
                September 2013
                September 2013
                : 101
                : 5
                : 1322-1334
                Article
                10.1111/1365-2745.12119
                e86199e9-28cd-468c-a1da-7bd718c65771
                © 2013

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article