7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The physiological effects of concurrent strength and endurance training sequence: A systematic review and meta-analysis

      , ,
      Journal of Sports Sciences
      Informa UK Limited

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We conducted a systematic literature review and meta-analysis to assess the chronic effects of the sequence of concurrent strength and endurance training on selected important physiological and performance parameters, namely lower body 1 repetition maximum (1RM) and maximal aerobic capacity (VO2max/peak). Based on predetermined eligibility criteria, chronic effect trials, comparing strength-endurance (SE) with endurance-strength (ES) training sequence in the same session were included. Data on effect sizes, sample size and SD as well other related study characteristics were extracted. The effect sizes were pooled using, Fixed or Random effect models as per level of heterogeneity between studies and a further sensitivity analyses was carried out using Inverse Variance Heterogeneity (IVHet) models to adjust for potential bias due to heterogeneity. Lower body 1RM was significantly higher when strength training preceded endurance with a pooled mean change of 3.96 kg (95%CI: 0.81 to 7.10 kg). However, the training sequence had no impact on aerobic capacity with a pooled mean difference of 0.39 ml.kg.min-1 (95%CI: -1.03 to 1.81 ml.kg.min-1). Sequencing strength training prior to endurance in concurrent training appears to be beneficial for lower body strength adaptations, while the improvement of aerobic capacity is not affected by training order.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Concurrent training: a meta-analysis examining interference of aerobic and resistance exercises.

          The primary objective of this investigation was to identify which components of endurance training (e.g., modality, duration, frequency) are detrimental to resistance training outcomes. A meta-analysis of 21 studies was performed with a total of 422 effect sizes (ESs). Criteria for the study included were (a) compare strength training alone to strength plus endurance training (concurrent) or to compare combinations of concurrent training; (b) the outcome measures include at least one measure of strength, power, or hypertrophy; and (c) the data necessary to calculate ESs must be included or available. The mean ES for hypertrophy for strength training was 1.23; for endurance training, it was 0.27; and for concurrent training, it was 0.85, with strength and concurrent training being significantly greater than endurance training only. The mean ES for strength development for strength training was 1.76; for endurance training, it was 0.78; and for concurrent training, it was 1.44. Strength and concurrent training was significantly greater than endurance training. The mean ES for power development for strength training only was 0.91; for endurance training, it was 0.11; and for concurrent training, it was 0.55. Significant differences were found between all the 3 groups. For moderator variables, resistance training concurrently with running, but not cycling, resulted in significant decrements in both hypertrophy and strength. Correlational analysis identified significant negative relationships between frequency (-0.26 to -0.35) and duration (-0.29 to -0.75) of endurance training for hypertrophy, strength, and power. Significant relationships (p < 0.05) between ES for decreased body fat and % maximal heart rate (r = -0.60) were also found. Our results indicate that interference effects of endurance training are a factor of the modality, frequency, and duration of the endurance training selected.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interference between concurrent resistance and endurance exercise: molecular bases and the role of individual training variables.

            Concurrent training is defined as simultaneously incorporating both resistance and endurance exercise within a periodized training regime. Despite the potential additive benefits of combining these divergent exercise modes with regards to disease prevention and athletic performance, current evidence suggests that this approach may attenuate gains in muscle mass, strength, and power compared with undertaking resistance training alone. This has been variously described as the interference effect or concurrent training effect. In recent years, understanding of the molecular mechanisms mediating training adaptation in skeletal muscle has emerged and provided potential mechanistic insight into the concurrent training effect. Although it appears that various molecular signaling responses induced in skeletal muscle by endurance exercise can inhibit pathways regulating protein synthesis and stimulate protein breakdown, human studies to date have not observed such molecular 'interference' following acute concurrent exercise that might explain compromised muscle hypertrophy following concurrent training. However, given the multitude of potential concurrent training variables and the limitations of existing evidence, the potential roles of individual training variables in acute and chronic interference are not fully elucidated. The present review explores current evidence for the molecular basis of the specificity of training adaptation and the concurrent interference phenomenon. Additionally, insights provided by molecular and performance-based concurrent training studies regarding the role of individual training variables (i.e., within-session exercise order, between-mode recovery, endurance training volume, intensity, and modality) in the concurrent interference effect are discussed, along with the limitations of our current understanding of this complex paradigm.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evaluation of old and new tests of heterogeneity in epidemiologic meta-analysis.

              The identification of heterogeneity in effects between studies is a key issue in meta-analyses of observational studies, since it is critical for determining whether it is appropriate to pool the individual results into one summary measure. The result of a hypothesis test is often used as the decision criterion. In this paper, the authors use a large simulation study patterned from the key features of five published epidemiologic meta-analyses to investigate the type I error and statistical power of five previously proposed asymptotic homogeneity tests, a parametric bootstrap version of each of the tests, and tau2-bootstrap, a test proposed by the authors. The results show that the asymptotic DerSimonian and Laird Q statistic and the bootstrap versions of the other tests give the correct type I error under the null hypothesis but that all of the tests considered have low statistical power, especially when the number of studies included in the meta-analysis is small (<20). From the point of view of validity, power, and computational ease, the Q statistic is clearly the best choice. The authors found that the performance of all of the tests considered did not depend appreciably upon the value of the pooled odds ratio, both for size and for power. Because tests for heterogeneity will often be underpowered, random effects models can be used routinely, and heterogeneity can be quantified by means of R(I), the proportion of the total variance of the pooled effect measure due to between-study variance, and CV(B), the between-study coefficient of variation.
                Bookmark

                Author and article information

                Journal
                Journal of Sports Sciences
                Journal of Sports Sciences
                Informa UK Limited
                0264-0414
                1466-447X
                August 22 2017
                August 07 2017
                : 36
                : 11
                : 1212-1219
                Article
                10.1080/02640414.2017.1364405
                28783467
                e8628d03-10a2-43e4-a25a-4f7fe728f950
                © 2017
                History

                Comments

                Comment on this article