19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Hippo Signaling Network and Its Biological Functions

      1 , 1
      Annual Review of Genetics
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P1">Hippo signaling is an evolutionarily conserved network that plays a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional co-activator proteins YAP and TAZ in mammals, or Yorkie in <i>Drosophila</i>. Diverse upstream inputs including both biochemical and biomechanical cues regulate Hippo signaling, which enable it to play a key role as a sensor of cells’ physical environment and an integrator of growth control signals. Several components of this pathway localize to cell-cell junctions, and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Down-regulation of Hippo signaling promotes uncontrolled cell proliferation and impairs differentiation, and is associated with cancer. We review current understanding of Hippo signaling, highlighting progress in elucidating its regulatory mechanisms and biological functions. </p>

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling.

          The Hippo pathway is crucial in organ size control, and its dysregulation contributes to tumorigenesis. However, upstream signals that regulate the mammalian Hippo pathway have remained elusive. Here, we report that the Hippo pathway is regulated by G-protein-coupled receptor (GPCR) signaling. Serum-borne lysophosphatidic acid (LPA) and sphingosine 1-phosphophate (S1P) act through G12/13-coupled receptors to inhibit the Hippo pathway kinases Lats1/2, thereby activating YAP and TAZ transcription coactivators, which are oncoproteins repressed by Lats1/2. YAP and TAZ are involved in LPA-induced gene expression, cell migration, and proliferation. In contrast, stimulation of Gs-coupled receptors by glucagon or epinephrine activates Lats1/2 kinase activity, thereby inhibiting YAP function. Thus, GPCR signaling can either activate or inhibit the Hippo-YAP pathway depending on the coupled G protein. Our study identifies extracellular diffusible signals that modulate the Hippo pathway and also establishes the Hippo-YAP pathway as a critical signaling branch downstream of GPCR. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic and pharmacological disruption of the TEAD-YAP complex suppresses the oncogenic activity of YAP.

            The Drosophila TEAD ortholog Scalloped is required for Yki-mediated overgrowth but is largely dispensable for normal tissue growth, suggesting that its mammalian counterpart may be exploited for selective inhibition of oncogenic growth driven by YAP hyperactivation. Here we test this hypothesis genetically and pharmacologically. We show that a dominant-negative TEAD molecule does not perturb normal liver growth but potently suppresses hepatomegaly/tumorigenesis resulting from YAP overexpression or Neurofibromin 2 (NF2)/Merlin inactivation. We further identify verteporfin as a small molecule that inhibits TEAD-YAP association and YAP-induced liver overgrowth. These findings provide proof of principle that inhibiting TEAD-YAP interactions is a pharmacologically viable strategy against the YAP oncoprotein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              E-cadherin mediates contact inhibition of proliferation through Hippo signaling-pathway components.

              Contact inhibition of cell growth is essential for embryonic development and maintenance of tissue architecture in adult organisms, and the growth of tumors is characterized by a loss of contact inhibition of proliferation. The recently identified Hippo signaling pathway has been implicated in contact inhibition of proliferation as well as organ size control. The modulation of the phosphorylation and nuclear localization of Yes-associated protein (YAP) by the highly conserved kinase cascade of the Hippo signaling pathway has been intensively studied. However, cell-surface receptors regulating the Hippo signaling pathway in mammals are not well understood. In this study, we show that Hippo signaling pathway components are required for E-cadherin-dependent contact inhibition of proliferation. Knockdown of the Hippo signaling components or overexpression of YAP inhibits the decrease in cell proliferation caused by E-cadherin homophilic binding at the cell surface, independent of other cell-cell interactions. We also demonstrate that the E-cadherin/catenin complex functions as an upstream regulator of the Hippo signaling pathway in mammalian cells. Expression of E-cadherin in MDA-MB-231 cells restores the density-dependent regulation of YAP nuclear exclusion. Knockdown of β-catenin in densely cultured MCF10A cells, which mainly depletes E-cadherin-bound β-catenin, induces a decrease in the phosphorylation of S127 residue of YAP and its nuclear accumulation. Moreover, E-cadherin homophilic binding independent of other cell interactions is sufficient to control the subcellular localization of YAP. Therefore, Our results indicate that, in addition to its role in cell-cell adhesion, E-cadherin-mediated cell-cell contact directly regulates the Hippo signaling pathway to control cell proliferation.
                Bookmark

                Author and article information

                Journal
                Annual Review of Genetics
                Annu. Rev. Genet.
                Annual Reviews
                0066-4197
                1545-2948
                November 23 2018
                November 23 2018
                : 52
                : 1
                : 65-87
                Affiliations
                [1 ]Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA;
                Article
                10.1146/annurev-genet-120417-031621
                6322405
                30183404
                e8695555-a473-4a2c-86b6-35eb1588cd0b
                © 2018
                History

                Comments

                Comment on this article