22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.

          Related collections

          Most cited references124

          • Record: found
          • Abstract: found
          • Article: not found

          Nanoparticles in medicine: therapeutic applications and developments.

          Nanotechnology is the understanding and control of matter generally in the 1-100 nm dimension range. The application of nanotechnology to medicine, known as nanomedicine, concerns the use of precisely engineered materials at this length scale to develop novel therapeutic and diagnostic modalities. Nanomaterials have unique physicochemical properties, such as ultra small size, large surface area to mass ratio, and high reactivity, which are different from bulk materials of the same composition. These properties can be used to overcome some of the limitations found in traditional therapeutic and diagnostic agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications.

            Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nanoparticle delivery of cancer drugs.

              Nanomedicine, the application of nanotechnology to medicine, enabled the development of nanoparticle therapeutic carriers. These drug carriers are passively targeted to tumors through the enhanced permeability and retention effect, so they are ideally suited for the delivery of chemotherapeutics in cancer treatment. Indeed, advances in nanomedicine have rapidly translated into clinical practice. To date, there are five clinically approved nanoparticle chemotherapeutics for cancer and many more under clinical investigation. In this review, we discuss the various nanoparticle drug delivery platforms and the important concepts involved in nanoparticle drug delivery. We also review the clinical data on the approved nanoparticle therapeutics as well as the nanotherapeutics under clinical investigation.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                16 September 2015
                September 2015
                : 20
                : 9
                : 16852-16891
                Affiliations
                [1 ]UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; E-Mails: pf.martins@ 123456campus.fct.unl.pt (P.M.); joao.af.jesus@ 123456gmail.com (J.J.); sg.santos@ 123456campus.fct.unl.pt (S.S.); luismrraposo@ 123456gmail.com (L.R.R.); catromar@ 123456fct.unl.pt (C.R.-R.)
                [2 ]Centro de Química Estrutural, Complexo 1, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
                Author notes
                [* ] Authors to whom correspondence should be addressed; E-Mails: pmvb@ 123456fct.unl.pt (P.V.B.); ma.fernandes@ 123456fct.unl.pt (A.R.F.); Tel./Fax: +351-21-2894-8530 (P.V.B. & A.R.F.).
                Article
                molecules-20-16852
                10.3390/molecules200916852
                6331900
                26389876
                e86a0fbf-a41b-46be-9235-8fc56a203ff5
                © 2015 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 June 2015
                : 09 September 2015
                Categories
                Review

                cancer therapy,heterocyclic compounds,oxygen and nitrogen-based heterocycles,drug delivery,nanomedicine

                Comments

                Comment on this article