11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ideas and perspectives: how coupled is the vegetation to the boundary layer?

      , , ,  
      Biogeosciences
      Copernicus GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Understanding the sensitivity of transpiration to stomatal conductance is critical to simulating the water cycle. This sensitivity is a function of the degree of coupling between the vegetation and the atmosphere and is commonly expressed by the decoupling factor. The degree of coupling assumed by models varies considerably and has previously been shown to be a major cause of model disagreement when simulating changes in transpiration in response to elevated CO<sub>2</sub>. The degree of coupling also offers us insight into how different vegetation types control transpiration fluxes, which is fundamental to our understanding of land–atmosphere interactions. To explore this issue, we combined an extensive literature summary from 41 studies with estimates of the decoupling coefficient estimated from FLUXNET data. We found some notable departures from the values previously reported in single-site studies. There was large variability in estimated decoupling coefficients (range 0.05–0.51) for evergreen needleleaf forests. This is a result that was broadly supported by our literature review but contrasts with the early literature which suggests that evergreen needleleaf forests are generally well coupled. Estimates from FLUXNET indicated that evergreen broadleaved forests were the most tightly coupled, differing from our literature review and instead suggesting that it was evergreen needleleaf forests. We also found that the assumption that grasses would be strongly decoupled (due to vegetation stature) was only true for high precipitation sites. These results were robust to assumptions about aerodynamic conductance and, to a lesser extent, energy balance closure. Thus, these data form a benchmarking metric against which to test model assumptions about coupling. Our results identify a clear need to improve the quantification of the processes involved in scaling from the leaf to the whole ecosystem. Progress could be made with targeted measurement campaigns at flux sites and greater site characteristic information across the FLUXNET network.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: not found
          • Article: not found

          The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field

          P. Jarvis (1976)
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Energy balance closure at FLUXNET sites

              Bookmark
              • Record: found
              • Abstract: not found
              • Book Chapter: not found

              Stomatal Control of Transpiration: Scaling Up from Leaf to Region

                Bookmark

                Author and article information

                Journal
                Biogeosciences
                Biogeosciences
                Copernicus GmbH
                1726-4189
                2017
                October 09 2017
                : 14
                : 19
                : 4435-4453
                Article
                10.5194/bg-14-4435-2017
                e872e36d-1668-49fe-b1b9-7565259919fb
                © 2017

                https://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article