12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Receptor for advanced glycation endproducts (RAGE) deficiency protects against MPTP toxicity

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Parkinson's disease (PD) is a common neurodegenerative disorder of unknown pathogenesis characterized by the loss of nigrostriatal dopaminergic neurons. Oxidative stress, microglial activation and inflammatory responses seem to contribute to the pathogenesis. The receptor for advanced glycation endproducts (RAGE) is a multiligand receptor of the immunoglobulin superfamily of cell surface molecules. The formation of advanced glycation end products (AGEs), the first ligand of RAGE identified, requires a complex series of reactions including nonenzymatic glycation and free radical reactions involving superoxide-radicals and hydrogen peroxide. Binding of RAGE ligands results in activation of nuclear factor-kappaB (NF-κB). We show that RAGE ablation protected nigral dopaminergic neurons against cell death induced by the neurotoxin MPTP that mimics most features of PD. In RAGE-deficient mice the translocation of the NF-κB subunit p65 to the nucleus, in dopaminergic neurons and glial cells was inhibited suggesting that RAGE involves the activation of NF-κB. The mRNA level of S100, one of the ligands of RAGE, was increased after MPTP treatment. The dopaminergic neurons treated with MPP + and S100 protein showed increased levels of apoptotic cell death, which was attenuated in RAGE-deficient mice. Our results suggest that activation of RAGE contributes to MPTP/MPP +-induced death of dopaminergic neurons that may be mediated by NF-κB activation.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.

          S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin superfamily. Interaction of EN-RAGEs with cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Blockade of EN-RAGE/RAGE quenches delayed-type hypersensitivity and inflammatory colitis in murine models by arresting activation of central signaling pathways and expression of inflammatory gene mediators. These data highlight a novel paradigm in inflammation and identify roles for EN-RAGEs and RAGE in chronic cellular activation and tissue injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B.

            NF-kappa B, which consists of two polypeptides, p50 (M(r) 50K) and p65/RelA (M(r) 65K), is thought to be a key regulator of genes involved in responses to infection, inflammation and stress. Indeed, although developmentally normal, mice deficient in p50 display functional defects in immune responses. Here we describe the generation of mice deficient in the RelA subunit of NF-kappa B. Disruption of the relA locus leads to embryonic lethality at 15-16 days of gestation, concomitant with a massive degeneration of the liver by programmed cell death or apoptosis. Embryonic fibroblasts from RelA-deficient mice are defective in the tumour necrosis factor (TNF)-mediated induction of messenger RNAs for I kappa B alpha and granulocyte/macrophage colony stimulating factor (GM-CSF), although basal levels of these transcripts are unaltered. These results indicate that RelA controls inducible, but not basal, transcription in NF-kappa B-regulated pathways.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease.

              1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages the nigrostriatal dopaminergic pathway as seen in Parkinson's disease (PD), a common neurodegenerative disorder with no effective protective treatment. Consistent with a role of glial cells in PD neurodegeneration, here we show that minocycline, an approved tetracycline derivative that inhibits microglial activation independently of its antimicrobial properties, mitigates both the demise of nigrostriatal dopaminergic neurons and the formation of nitrotyrosine produced by MPTP. In addition, we show that minocycline not only prevents MPTP-induced activation of microglia but also the formation of mature interleukin-1beta and the activation of NADPH-oxidase and inducible nitric oxide synthase (iNOS), three key microglial-derived cytotoxic mediators. Previously, we demonstrated that ablation of iNOS attenuates MPTP-induced neurotoxicity. Now, we demonstrate that iNOS is not the only microglial-related culprit implicated in MPTP-induced toxicity because mutant iNOS-deficient mice treated with minocycline are more resistant to this neurotoxin than iNOS-deficient mice not treated with minocycline. This study demonstrates that microglial-related inflammatory events play a significant role in the MPTP neurotoxic process and suggests that minocycline may be a valuable neuroprotective agent for the treatment of PD.
                Bookmark

                Author and article information

                Contributors
                Journal
                Neurobiol Aging
                Neurobiol. Aging
                Neurobiology of Aging
                Elsevier
                0197-4580
                1558-1497
                1 October 2012
                October 2012
                : 33
                : 10
                : 2478-2490
                Affiliations
                [a ]Department of Neurodegeneration and Restorative Research, Center of Molecular Physiology of the Brain (CMPB) and Center of Neurological Medicine, University of Göttingen, Göttingen, Germany
                [b ]School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
                [c ]Department of Medicine, Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
                [d ]Department of Medicine, Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
                [e ]Eucodis, GmbH, Vienna, Austria
                [f ]RWTH University Hospital, Department of Neurology, JARA-BRAIN, Aachen, Germany
                Author notes
                [* ]Corresponding author. Tel.: +44 1224 437325; fax: +44 1224 437465 p.teismann@ 123456abdn.ac.uk
                Article
                NBA8042
                10.1016/j.neurobiolaging.2011.12.006
                3712169
                22227007
                e8730d21-4a5c-456c-ad31-786f5490d24f
                © 2012 Elsevier Inc.

                This document may be redistributed and reused, subject to certain conditions.

                History
                : 13 February 2011
                : 9 November 2011
                : 1 December 2011
                Categories
                Regular Article

                Neurosciences
                mptp,nf-κb,parkinson's disease,rage,neuroprotection,microglia,astrocytes
                Neurosciences
                mptp, nf-κb, parkinson's disease, rage, neuroprotection, microglia, astrocytes

                Comments

                Comment on this article