8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Evidence for reactive reduced phosphorus species in the early Archean ocean

      , , , ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          It has been hypothesized that before the emergence of modern DNA-RNA-protein life, biology evolved from an "RNA world." However, synthesizing RNA and other organophosphates under plausible early Earth conditions has proved difficult, with the incorporation of phosphorus (P) causing a particular problem because phosphate, where most environmental P resides, is relatively insoluble and unreactive. Recently, it has been proposed that during the Hadean-Archean heavy bombardment by extraterrestrial impactors, meteorites would have provided reactive P in the form of the iron-nickel phosphide mineral schreibersite. This reacts in water, releasing soluble and reactive reduced P species, such as phosphite, that could then be readily incorporated into prebiotic molecules. Here, we report the occurrence of phosphite in early Archean marine carbonates at levels indicating that this was an abundant dissolved species in the ocean before 3.5 Ga. Additionally, we show that schreibersite readily reacts with an aqueous solution of glycerol to generate phosphite and the membrane biomolecule glycerol-phosphate under mild thermal conditions, with this synthesis using a mineral source of P. Phosphite derived from schreibersite was, hence, a plausible reagent in the prebiotic synthesis of phosphorylated biomolecules and was also present on the early Earth in quantities large enough to have affected the redox state of P in the ocean. Phosphorylated biomolecules like RNA may, thus, have first formed from the reaction of reduced P species with the prebiotic organic milieu on the early Earth.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions.

          At some stage in the origin of life, an informational polymer must have arisen by purely chemical means. According to one version of the 'RNA world' hypothesis this polymer was RNA, but attempts to provide experimental support for this have failed. In particular, although there has been some success demonstrating that 'activated' ribonucleotides can polymerize to form RNA, it is far from obvious how such ribonucleotides could have formed from their constituent parts (ribose and nucleobases). Ribose is difficult to form selectively, and the addition of nucleobases to ribose is inefficient in the case of purines and does not occur at all in the case of the canonical pyrimidines. Here we show that activated pyrimidine ribonucleotides can be formed in a short sequence that bypasses free ribose and the nucleobases, and instead proceeds through arabinose amino-oxazoline and anhydronucleoside intermediates. The starting materials for the synthesis-cyanamide, cyanoacetylene, glycolaldehyde, glyceraldehyde and inorganic phosphate-are plausible prebiotic feedstock molecules, and the conditions of the synthesis are consistent with potential early-Earth geochemical models. Although inorganic phosphate is only incorporated into the nucleotides at a late stage of the sequence, its presence from the start is essential as it controls three reactions in the earlier stages by acting as a general acid/base catalyst, a nucleophilic catalyst, a pH buffer and a chemical buffer. For prebiotic reaction sequences, our results highlight the importance of working with mixed chemical systems in which reactants for a particular reaction step can also control other steps.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The antiquity of RNA-based evolution.

            All life that is known to exist on Earth today and all life for which there is evidence in the geological record seems to be of the same form--one based on DNA genomes and protein enzymes. Yet there are strong reasons to conclude that DNA- and protein-based life was preceded by a simpler life form based primarily on RNA. This earlier era is referred to as the 'RNA world', during which the genetic information resided in the sequence of RNA molecules and the phenotype derived from the catalytic properties of RNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An Archaean heavy bombardment from a destabilized extension of the asteroid belt.

              The barrage of comets and asteroids that produced many young lunar basins (craters over 300 kilometres in diameter) has frequently been called the Late Heavy Bombardment (LHB). Many assume the LHB ended about 3.7 to 3.8 billion years (Gyr) ago with the formation of Orientale basin. Evidence for LHB-sized blasts on Earth, however, extend into the Archaean and early Proterozoic eons, in the form of impact spherule beds: globally distributed ejecta layers created by Chicxulub-sized or larger cratering events4. At least seven spherule beds have been found that formed between 3.23 and 3.47 Gyr ago, four between 2.49 and 2.63 Gyr ago, and one between 1.7 and 2.1 Gyr ago. Here we report that the LHB lasted much longer than previously thought, with most late impactors coming from the E belt, an extended and now largely extinct portion of the asteroid belt between 1.7 and 2.1 astronomical units from Earth. This region was destabilized by late giant planet migration. E-belt survivors now make up the high-inclination Hungaria asteroids. Scaling from the observed Hungaria asteroids, we find that E-belt projectiles made about ten lunar basins between 3.7 and 4.1 Gyr ago. They also produced about 15 terrestrial basins between 2.5 and 3.7 Gyr ago, as well as around 70 and four Chicxulub-sized or larger craters on the Earth and Moon, respectively, between 1.7 and 3.7 Gyr ago. These rates reproduce impact spherule bed and lunar crater constraints.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                June 18 2013
                June 18 2013
                June 03 2013
                June 18 2013
                : 110
                : 25
                : 10089-10094
                Article
                10.1073/pnas.1303904110
                3690879
                23733935
                e87b1baa-665a-481c-a205-c71a4435e11d
                © 2013
                History

                Comments

                Comment on this article