9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacokinetic and Genomic Effects of Arsenite in Drinking Water on Mouse Lung in a 30-Day Exposure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The 2 objectives of this subchronic study were to determine the arsenite drinking water exposure dependent increases in female C3H mouse liver and lung tissue arsenicals and to characterize the dose response (to 0, 0.05, 0.25, 1, 10, and 85 ppm arsenite in drinking water for 30 days and a purified AIN-93M diet) for genomic mouse lung expression patterns. Mouse lungs were analyzed for inorganic arsenic, monomethylated, and dimethylated arsenicals by hydride generation atomic absorption spectroscopy. The total lung mean arsenical levels were 1.4, 22.5, 30.1, 50.9, 105.3, and 316.4 ng/g lung tissue after 0, 0.05, 0.25, 1, 10, and 85 ppm, respectively. At 85 ppm, the total mean lung arsenical levels increased 14-fold and 131-fold when compared to either the lowest noncontrol dose (0.05 ppm) or the control dose, respectively. We found that arsenic exposure elicited minimal numbers of differentially expressed genes (DEGs; 77, 38, 90, 87, and 87 DEGs ) after 0.05, 0.25, 1, 10, and 85 ppm, respectively, which were associated with cardiovascular disease, development, differentiation, apoptosis, proliferation, and stress response. After 30 days of arsenite exposure, this study showed monotonic increases in mouse lung arsenical ( total arsenic and dimethylarsinic acid) concentrations but no clear dose-related increases in DEG numbers.

          Related collections

          Most cited references59

          • Record: found
          • Abstract: found
          • Article: not found

          Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells.

          Biomethylation is considered a major detoxification pathway for inorganic arsenicals (iAs). According to the postulated metabolic scheme, the methylation of iAs yields methylated metabolites in which arsenic is present in both pentavalent and trivalent forms. Pentavalent mono- and dimethylated arsenicals are less acutely toxic than iAs. However, little is known about the toxicity of trivalent methylated species. In the work reported here the toxicities of iAs and trivalent and pentavalent methylated arsenicals were examined in cultured human cells derived from tissues that are considered a major site for iAs methylation (liver) or targets for carcinogenic effects associated with exposure to iAs (skin, urinary bladder, and lung). To characterize the role of methylation in the protection against toxicity of arsenicals, the capacities of cells to produce methylated metabolites were also examined. In addition to human cells, primary rat hepatocytes were used as methylating controls. Among the arsenicals examined, trivalent monomethylated species were the most cytotoxic in all cell types. Trivalent dimethylated arsenicals were at least as cytotoxic as trivalent iAs (arsenite) for most cell types. Pentavalent arsenicals were significantly less cytotoxic than their trivalent analogs. Among the cell types examined, primary rat hepatocytes exhibited the greatest methylation capacity for iAs followed by primary human hepatocytes, epidermal keratinocytes, and bronchial epithelial cells. Cells derived from human bladder did not methylate iAs. There was no apparent correlation between susceptibility of cells to arsenic toxicity and their capacity to methylate iAs. These results suggest that (1) trivalent methylated arsenicals, intermediary products of arsenic methylation, may significantly contribute to the adverse effects associated with exposure to iAs, and (2) high methylation capacity does not protect cells from the acute toxicity of trivalent arsenicals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water.

            Studies in Taiwan and Argentina suggest that ingestion of inorganic arsenic from drinking water results in increased risks of internal cancers, particularly bladder and lung cancer. The authors investigated cancer mortality in a population of around 400,000 people in a region of Northern Chile (Region II) exposed to high arsenic levels in drinking water in past years. Arsenic concentrations from 1950 to the present were obtained. Population-weighted average arsenic levels reached 570 microg/liter between 1955 to 1969, and decreased to less than 100 microg/liter by 1980. Standardized mortality ratios (SMRs) were calculated for the years 1989 to 1993. Increased mortality was found for bladder, lung, kidney, and skin cancer. Bladder cancer mortality was markedly elevated (men, SMR = 6.0 (95% confidence interval (CI) 4.8-7.4); women, SMR = 8.2 (95% CI 6.3-10.5)) as was lung cancer mortality (men, SMR = 3.8 (95% CI 3.5-4.1); women, SMR = 3.1 (95% CI 2.7-3.7)). Smoking survey data and mortality rates from chronic obstructive pulmonary disease provided evidence that smoking did not contribute to the increased mortality from these cancers. The findings provide additional evidence that ingestion of inorganic arsenic in drinking water is indeed a cause of bladder and lung cancer. It was estimated that arsenic might account for 7% of all deaths among those aged 30 years and over. If so, the impact of arsenic on the population mortality in Region II of Chile is greater than that reported anywhere to date from environmental exposure to a carcinogen in a major population.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites.

              Recent advances in our knowledge of arsenic carcinogenesis include the development of rat or mouse models for all human organs in which inorganic arsenic is known to cause cancer-skin, lung, urinary bladder, liver, and kidney. Tumors can be produced from either promotion of carcinogenesis protocols (mouse skin and lungs, rat bladder, kidney, liver, and thyroid) or from complete carcinogenesis protocols (rat bladder and mouse lung). Experiments with p53(+/-) and K6/ODC transgenic mice administered dimethylarsinic acid or arsenite have shown some degree of carcinogenic, cocarcinogenic, or promotional activity in skin or bladder. At present, with the possible exception of skin, the arsenic carcinogenesis models in wild-type animals are more highly developed than in transgenic mice. Recent advances in arsenic metabolism have suggested that methylation of inorganic arsenic may be a toxification, rather than a detoxification, pathway and that trivalent methylated arsenic metabolites, particularly monomethylarsonous acid and dimethylarsinous acid, have a great deal of biological activity. Accumulating evidence indicates that these trivalent, methylated, and relatively less ionizable arsenic metabolites may be unusually capable of interacting with cellular targets such as proteins and even DNA. In risk assessment of environmental arsenic, it is important to know and to utilize both the mode of carcinogenic action and the shape of the dose-response curve at low environmental arsenic concentrations. Although much progress has been recently made in the area of arsenic's possible mode(s) of carcinogenic action, a scientific concensus has not yet been reached. In this review, nine different possible modes of action of arsenic carcinogenesis are presented and discussed-induced chromosomal abnormalities, oxidative stress, altered DNA repair, altered DNA methylation patterns, altered growth factors, enhanced cell proliferation, promotion/progression, gene amplification, and suppression of p53.
                Bookmark

                Author and article information

                Journal
                Dose Response
                Dose Response
                DOS
                spdos
                Dose-Response
                SAGE Publications (Sage CA: Los Angeles, CA )
                1559-3258
                30 June 2015
                Apr-Jun 2015
                : 13
                : 2
                : 1559325815592392
                Affiliations
                [1 ]Alcon Labs (R9-7), Fort Worth, TX, USA
                [2 ]Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Durham, NC, USA
                [3 ]Sección de Investigación y Posgrado, Escuela Superior de Medicina del Instituto Politécnico Nacional, Mexico City, Mexico
                Author notes
                [*]Kirk T. Kitchin, US Environmental Protection Agency, Integrated Systems Toxicology Division, 109 TW Alexander Drive (B105-03), Durham, NC 27711. Email: kitchin.kirk@ 123456epa.gov
                Article
                10.1177_1559325815592392
                10.1177/1559325815592392
                4674186
                e8822cd5-9e82-4bc0-825c-1dc097d5835e
                © The Author(s) 2015

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( http://www.uk.sagepub.com/aboutus/openaccess.htm).

                History
                Categories
                Article
                Custom metadata
                April-June 2015

                arsenic,mice,drinking water,genomics,dose response
                arsenic, mice, drinking water, genomics, dose response

                Comments

                Comment on this article