21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cardiovascular deconditioning during long-term spaceflight through multiscale modeling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human spaceflight has been fascinating man for centuries, representing the intangible need to explore the unknown, challenge new frontiers, advance technology, and push scientific boundaries further. A key area of importance is cardiovascular deconditioning, that is, the collection of hemodynamic changes—from blood volume shift and reduction to altered cardiac function—induced by sustained presence in microgravity. A thorough grasp of the 0G adjustment point per se is important from a physiological viewpoint and fundamental for astronauts’ safety and physical capability on long spaceflights. However, hemodynamic details of cardiovascular deconditioning are incomplete, inconsistent, and poorly measured to date; thus a computational approach can be quite valuable. We present a validated 1D–0D multiscale model to study the cardiovascular response to long-term 0G spaceflight in comparison to the 1G supine reference condition. Cardiac work, oxygen consumption, and contractility indexes, as well as central mean and pulse pressures were reduced, augmenting the cardiac deconditioning scenario. Exercise tolerance of a spaceflight traveler was found to be comparable to an untrained person with a sedentary lifestyle. At the capillary–venous level significant waveform alterations were observed which can modify the regular perfusion and average nutrient supply at the cellular level. The present study suggests special attention should be paid to future long spaceflights which demand prompt physical capacity at the time of restoration of partial gravity (e.g., Moon/Mars landing). Since spaceflight deconditioning has features similar to accelerated aging understanding deconditioning mechanisms in microgravity are also relevant to the understanding of aging physiology on the Earth.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Assessment of Jugular Venous Blood Flow Stasis and Thrombosis During Spaceflight

          This cohort study examines the internal jugular vein flow and morphology of crew members of the International Space Station and the use of lower body negative pressure as a countermeasure to the headward fluid shift experienced during space flight.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Heart in space: effect of the extraterrestrial environment on the cardiovascular system

            National space agencies and private corporations aim at an extended presence of humans in space in the medium to long term. Together with currently suboptimal technology, microgravity and cosmic rays raise health concerns about deep-space exploration missions. Both of these physical factors affect the cardiovascular system, whose gravity-dependence is pronounced. Heart and vascular function are, therefore, susceptible to substantial changes in weightlessness. The altered cardiovascular function in space causes physiological problems in the postflight period. A compromised cardiovascular system can be excessively vulnerable to space radiation, synergistically resulting in increased damage. The space radiation dose is significantly lower than in patients undergoing radiotherapy, in whom cardiac damage is well-documented following cancer therapy in the thoracic region. Nevertheless, epidemiological findings suggest an increased risk of late cardiovascular disease even with low doses of radiation. Moreover, the peculiar biological effectiveness of heavy ions in cosmic rays might increase this risk substantially. However, whether radiation-induced cardiovascular effects have a threshold at low doses is still unclear. The main countermeasures to mitigate the effect of the space environment on cardiac function are physical exercise, antioxidants, nutraceuticals, and radiation shielding.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spaceflight-Induced Intracranial Hypertension and Visual Impairment: Pathophysiology and Countermeasures.

              Visual impairment intracranial pressure (VIIP) syndrome is considered an unexplained major risk for future long-duration spaceflight. NASA recently redefined this syndrome as Spaceflight-Associated Neuro-ocular Syndrome (SANS). Evidence thus reviewed supports that chronic, mildly elevated intracranial pressure (ICP) in space (as opposed to more variable ICP with posture and activity on Earth) is largely accounted for by loss of hydrostatic pressures and altered hemodynamics in the intracranial circulation and the cerebrospinal fluid system. In space, an elevated pressure gradient across the lamina cribrosa, caused by a chronic but mildly elevated ICP, likely elicits adaptations of multiple structures and fluid systems in the eye which manifest themselves as the VIIP syndrome. A chronic mismatch between ICP and intraocular pressure (IOP) in space may acclimate the optic nerve head, lamina cribrosa, and optic nerve subarachnoid space to a condition that is maladaptive to Earth, all contributing to the pathogenesis of space VIIP syndrome. Relevant findings help to evaluate whether artificial gravity is an appropriate countermeasure to prevent this seemingly adverse effect of long-duration spaceflight.
                Bookmark

                Author and article information

                Contributors
                stefania.scarsoglio@polito.it
                Journal
                NPJ Microgravity
                NPJ Microgravity
                Nature Publishing Group UK (London )
                2373-8065
                1 October 2020
                1 October 2020
                2020
                : 6
                : 27
                Affiliations
                [1 ]Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
                [2 ]Department of Environmental, Land and Infrastructure Engineering, Politecnico di Torino, Torino, Italy
                Author information
                http://orcid.org/0000-0002-0489-7615
                http://orcid.org/0000-0002-9427-6491
                Article
                117
                10.1038/s41526-020-00117-5
                7529778
                33083524
                e8837efa-e783-4c4d-adfd-c2c17dd97297
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 January 2020
                : 10 August 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                biomedical engineering,medical research
                biomedical engineering, medical research

                Comments

                Comment on this article