28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The present study was designed to investigate the ameliorative potential of Ocimum sanctum and its saponin rich fraction in vincristine-induced peripheral neuropathic pain in rats. Peripheral neuropathy was induced in rats by administration of vincristine sulfate (50 μg/kg i.p.) for 10 consecutive days. The mechanical hyperalgesia, cold allodynia, paw heat hyperalgesia and cold tail hyperalgesia were assessed by performing the pinprick, acetone, hot plate and cold tail immersion tests, respectively. Biochemically, the tissue thio-barbituric acid reactive species (TBARS), super-oxide anion content (markers of oxidative stress) and total calcium levels were measured. Vincristine administration was associated with the development of mechanical hyperalgesia, cold allodynia, heat and cold hyperalgesia. Furthermore, vincristine administration was also associated with an increase in oxidative stress and calcium levels. However, administration of Ocimum sanctum (100 and 200 mg/kg p.o.) and its saponin rich fraction (100 and 200 mg/kg p.o.) for 14 days significantly attenuated vincristine-induced neuropathic pain along with decrease in oxidative stress and calcium levels. It may be concluded that Ocimum sanctum has ameliorative potential in attenuating chemotherapy induced-painful neuropathic state, which may be attributed to decrease in oxidative stress and calcium levels. Furthermore, saponin rich fraction of Ocimum sanctum may be responsible for its noted beneficial effect in neuropathic pain in rats.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Spared nerve injury: an animal model of persistent peripheral neuropathic pain.

          Peripheral neuropathic pain is produced by multiple etiological factors that initiate a number of diverse mechanisms operating at different sites and at different times and expressed both within, and across different disease states. Unraveling the mechanisms involved requires laboratory animal models that replicate as far as possible, the different pathophysiological changes present in patients. It is unlikely that a single animal model will include the full range of neuropathic pain mechanisms. A feature of several animal models of peripheral neuropathic pain is partial denervation. In the most frequently used models a mixture of intact and injured fibers is created by loose ligation of either the whole (Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 1988;33:87-107) or a tight ligation of a part (Seltzer Z, Dubner R, Shir Y. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 1990;43:205-218) of a large peripheral nerve, or a tight ligation of an entire spinal segmental nerve (Kim SH, Chung JM. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 1992;50:355-363). We have developed a variant of partial denervation, the spared nerve injury model. This involves a lesion of two of the three terminal branches of the sciatic nerve (tibial and common peroneal nerves) leaving the remaining sural nerve intact. The spared nerve injury model differs from the Chung spinal segmental nerve, the Bennett chronic constriction injury and the Seltzer partial sciatic nerve injury models in that the co-mingling of distal intact axons with degenerating axons is restricted, and it permits behavioral testing of the non-injured skin territories adjacent to the denervated areas. The spared nerve injury model results in early ( 6 months), robust (all animals are responders) behavioral modifications. The mechanical (von Frey and pinprick) sensitivity and thermal (hot and cold) responsiveness is increased in the ipsilateral sural and to a lesser extent saphenous territories, without any change in heat thermal thresholds. Crush injury of the tibial and common peroneal nerves produce similar early changes, which return, however to baseline at 7-9 weeks. The spared nerve injury model may provide, therefore, an additional resource for unraveling the mechanisms responsible for the production of neuropathic pain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension.

            Cardiovascular (systolic and diastolic blood pressure, heart rate), antihyperlipidemic (tryglycerides, total cholesterol and lipoprotein fractions), antioxidant (glutathione peroxidase--GPx, and superoxide dismutase--SOD), diuretic/saluretic and hypoglycemic activity of 98% pure oleanolic (OA) and ursolic (UA) acid were studied in Dahl salt-sensitive (DSS), insulin resistant rat model of genetic hypertension. Both OA and UA displayed low toxicity, with LC50 0.10 and 0.95 mg/ml, respectively. Although both triterpenoids did not have direct hypotensive effect, after 6-week application in a daily dose 60 mg/kg b.w., i.p., they prevented the development of severe hypertension. The antihypertensive effect was attributed to their potent diuretic-natriuretic-saluretic activity; direct cardiac effect (heart rate decrease by 34% and 32%, respectively); antihyperlipidemic (more than two times decrease of LDL and triglycerides); antioxidant (GPx increase by 12% and 10%, respectively; SOD increase by 12% and 22%, respectively), and hypoglycemic (blood glucose decrease by 20% and 50%, respectively) effects on the DSS rats. Except for the antihyperlipidemic effects, the other described above in vivo antihypertensive effects of OA and UA are reported for the first time and the underlying mechanisms are currently under investigation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose.

              Ursolic acid (UA), a pentracyclic triterpene, is reported to have an antioxidant activity. Here we assessed the protective effect of UA against the d-galactose (D-gal)-induced neurotoxicity. We found that UA markedly reversed the D-gal induced learning and memory impairment by behavioral tests. The following antioxidant defense enzymes were measured: superoxide dismutases (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR). The content of the lipid peroxidation product malondialdehyde (MDA) was also analyzed. Our results indicated that the neuroprotective effect of UA against D-gal induced neurotoxicity might be caused, at least in part, by the increase in the activity of antioxidant enzymes with a reduction in lipid peroxidation. And UA also inhibited the activation of caspase-3 induced by D-gal. Furthermore, we found that UA significantly increased the level of growth-associated protein GAP43 in the brain of D-gal-treated mice. These results suggest that the pharmacological action of UA may offer a novel therapeutic strategy for the treatment of age-related conditions.
                Bookmark

                Author and article information

                Journal
                J Brachial Plex Peripher Nerve Inj
                Journal of Brachial Plexus and Peripheral Nerve Injury
                BioMed Central
                1749-7221
                2010
                25 January 2010
                : 5
                : 3
                Affiliations
                [1 ]Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
                Article
                1749-7221-5-3
                10.1186/1749-7221-5-3
                2832770
                20181005
                e885b687-e671-4aca-8e6d-010c768794e6
                Copyright ©2010 Kaur et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 July 2009
                : 25 January 2010
                Categories
                Research article

                Neurology
                Neurology

                Comments

                Comment on this article