42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Protein Kinase Double-Stranded RNA-Dependent (PKR) Enhances Protection against Disease Cause by a Non-Viral Pathogen

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PKR is well characterized for its function in antiviral immunity. Using Toxoplasma gondii, we examined if PKR promotes resistance to disease caused by a non-viral pathogen. PKR −/− mice infected with T. gondii exhibited higher parasite load and worsened histopathology in the eye and brain compared to wild-type controls. Susceptibility to toxoplasmosis was not due to defective expression of IFN-γ, TNF-α, NOS2 or IL-6 in the retina and brain, differences in IL-10 expression in these organs or to impaired induction of T. gondii-reactive T cells. While macrophages/microglia with defective PKR signaling exhibited unimpaired anti- T. gondii activity in response to IFN-γ/TNF-α, these cells were unable to kill the parasite in response to CD40 stimulation. The TRAF6 binding site of CD40, but not the TRAF2,3 binding sites, was required for PKR phosphorylation in response to CD40 ligation in macrophages. TRAF6 co-immunoprecipitated with PKR upon CD40 ligation. TRAF6-PKR interaction appeared to be indirect, since TRAF6 co-immunoprecipitated with TRAF2 and TRAF2 co-immunoprecipitated with PKR, and deficiency of TRAF2 inhibited TRAF6-PKR co-immunoprecipitation as well as PKR phosphorylation induced by CD40 ligation. PKR was required for stimulation of autophagy, accumulation the autophagy molecule LC3 around the parasite, vacuole-lysosomal fusion and killing of T. gondii in CD40-activated macrophages and microglia. Thus, our findings identified PKR as a mediator of anti-microbial activity and promoter of protection against disease caused by a non-viral pathogen, revealed that PKR is activated by CD40 via TRAF6 and TRAF2, and positioned PKR as a link between CD40-TRAF signaling and stimulation of the autophagy pathway.

          Author Summary

          PKR was identified more than 30 years ago as an inhibitor of viral replication. It is unknown if PKR promotes protection against disease caused by non-viral pathogens. We addressed this question using Toxoplasma gondii, a major parasitic pathogen. T. gondii can cause cerebral and/or eye disease primarily in immunosuppressed patients and newborns. After infection with T. gondii, PKR-deficient mice exhibited high parasite loads in the eye and brain and were more susceptible to ocular and cerebral toxoplasmosis. Macrophages and microglia are important effectors of protection against T. gondii. These cells required PKR signaling to kill the parasite in response to stimulation via CD40, a molecule that promotes protection against ocular and cerebral toxoplasmosis. CD40 functioned only through its TRAF6 binding site to activate PKR, but this process was also dependent on TRAF2 where this molecule likely acted as an intermediary that promoted TRAF6-PKR association and PKR activation. PKR linked CD40-TRAF signaling to stimulation of the autophagy pathway and T. gondii killing. Our studies identified a previously unappreciated role of PKR as mediator of anti-microbial activity and promoter of resistance against disease caused by a non-viral pathogen, as well as provided new insight on the molecular link between CD40 and PKR.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          The role of Atg proteins in autophagosome formation.

          Macroautophagy is mediated by a unique organelle, the autophagosome, which encloses a portion of cytoplasm for delivery to the lysosome. Autophagosome formation is dynamically regulated by starvation and other stresses and involves complicated membrane reorganization. Since the discovery of yeast Atg-related proteins, autophagosome formation has been dissected at the molecular level. In this review we describe the molecular mechanism of autophagosome formation with particular focus on the function of Atg proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conventional T-bet+Foxp3− Th1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection

            Although interferon γ (IFN-γ) secretion is essential for control of most intracellular pathogens, host survival often also depends on the expression of interleukin 10 (IL-10), a cytokine known to counteract IFN-γ effector functions. We analyzed the source of regulatory IL-10 in mice infected with the protozoan parasite Toxoplasma gondii. Unexpectedly, IFN-γ–secreting T-bet+Foxp3− T helper type 1 (Th1) cells were found to be the major producers of IL-10 in these animals. Further analysis revealed that the same IL-10+IFN-γγ population displayed potent effector function against the parasite while, paradoxically, also inducing profound suppression of IL-12 production by antigen-presenting cells. Although at any given time point only a fraction of the cells appeared to simultaneously produce IL-10 and IFN-γ, IL-10 production could be stimulated in IL-10−IFN-γ+ cells by further activation in vitro. In addition, experiments with T. gondii–specific IL-10+IFN-γ+ CD4 clones revealed that although IFN-γ expression is imprinted and triggered with similar kinetics regardless of the state of Th1 cell activation, IL-10 secretion is induced more rapidly from recently activated than from resting cells. These findings indicate that IL-10 production by CD4+ T lymphocytes need not involve a distinct regulatory Th cell subset but can be generated in Th1 cells as part of the effector response to intracellular pathogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation and function of T-cell-mediated immunity during Toxoplasma gondii infection.

              The intracellular protozoan Toxoplasma gondii is a widespread opportunistic parasite of humans and animals. Normally, T. gondii establishes itself within brain and skeletal muscle tissues, persisting for the life of the host. Initiating and sustaining strong T-cell-mediated immunity is crucial in preventing the emergence of T. gondii as a serious pathogen. The parasite induces high levels of gamma interferon (IFN-gamma) during initial infection as a result of early T-cell as well as natural killer (NK) cell activation. Induction of interleukin-12 by macrophages is a major mechanism driving early IFN-gamma synthesis. The latter cytokine, in addition to promoting the differentiation of Th1 effectors, is important in macrophage activation and acquisition of microbicidal functions, such as nitric oxide release. During chronic infection, parasite-specific T lymphocytes release high levels of IFN-gamma, which is required to prevent cyst reactivation. T-cell-mediated cytolytic activity against infected cells, while easily demonstrable, plays a secondary role to inflammatory cytokine production. While part of the clinical manifestations of toxoplasmosis results from direct tissue destruction by the parasite, inflammatory cytokine-mediated immunopathologic changes may also contribute to disease progression.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2013
                August 2013
                22 August 2013
                : 9
                : 8
                : e1003557
                Affiliations
                [1 ]Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
                [2 ]Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
                [3 ]Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
                [4 ]Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
                [5 ]Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
                University of Medicine and Dentistry of New Jersey, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CSS JACP. Performed the experiments: PSO JACP CSS CLW KP. Analyzed the data: PSO JACP CSS. Contributed reagents/materials/analysis tools: GCS BL. Wrote the paper: CSS PSO.

                Article
                PPATHOGENS-D-12-02663
                10.1371/journal.ppat.1003557
                3749959
                23990781
                e88a9a53-06c3-498a-b1c3-94a3e42e7b39
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 October 2012
                : 1 July 2013
                Page count
                Pages: 17
                Funding
                This work was supported by NIH Grants EY018341 (CSS), CA062220 (GCS), P30 EY11373 and CWRU/UH Center for AIDS Research P30 AI036219. JACP is a recipient of a post-doctoral fellowship from the Ohio Lions Eye Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Immunology
                Immune Response
                Microbiology
                Protozoology
                Parastic Protozoans
                Toxoplasma Gondii
                Molecular Cell Biology
                Signal Transduction
                Signaling Cascades
                Protein Kinase Signaling Cascade

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article