5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relación genética entre las enfermedades pulmonares de origen ambiental u ocupacional y la osteoporosis: un enfoque bioinformático Translated title: Genetic relationship between pulmonary diseases of environmental or occupational origin and osteoporosis: a bioinformatic approach

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Resumen Objetivo: Identificación de biomarcadores que relacionan la osteoporosis con enfermedades pulmonares ocupacionales y ambientales. Material y métodos: Mediante bases de datos de terminología médica unificada se obtuvieron enfermedades relacionadas con enfermedades pulmonares que, junto con la osteoporosis, fueron analizadas en DisGeNET para obtener los genes asociados a cada enfermedad y formar una red de interacción proteína-proteína (PPI) mediante el uso de STRING dentro de Cytoscape. A través de la aplicación de diferentes algoritmos de centralidad utilizando CythoHubba en Cytoscape, se seleccionaron las 5 proteínas de la red con el mayor grado de centralidad. Resultados: 9 enfermedades fueron incluidas en el grupo de enfermedades pulmonares. Se obtuvieron 2.698 genes asociados a enfermedades pulmonares y a osteoporosis. Los genes vinculados con osteoporosis y con al menos dos de las enfermedades pulmonares incluidas dieron lugar a una red PPI con 152 nodos y 1.378 ejes. Las proteínas con mayor grado de centralidad de la red fueron AKT1, ALB, IL6, TP53 y VEGFA. Conclusiones: Existe una elevada relación entre la osteoporosis y las enfermedades pulmonares ambientales estudiadas, a través de genes con una implicación dual. Nosotros proponemos cinco genes importantes que vinculan estas enfermedades y que podrían constituir una base coherente para investigaciones más profundas en este campo.

          Translated abstract

          Summary Objetives: Identifying biomarkers that relate osteoporosis to occupational and environmental lung diseases. Material and methods: Using integrated medical terminology databases, diseases related to lung diseases were obtained which, together with osteoporosis, were analyzed in DisGeNET to obtain the genes associated with each disease and form a protein-protein interaction network (PPI) through the Cytoscape StringApp. Applying different centrality algorithms using CythoHubba in Cytoscape, the 5 network proteins with the highest degree of centrality were selected. Results: 9 diseases were included in the group of pulmonary diseases. 2,698 genes associated with lung diseases and osteoporosis were obtained. Genes associated with osteoporosis and with at least two of the included lung diseases resulted in a PPI network with 152 nodes and 1,378 axes. The proteins with the highest degree of network centrality were AKT1, ALB, IL6, TP53 and VEGFA. Conclusions: There is a significant relationship between osteoporosis and the environmental lung diseases studied, through genes with dual involvement. We propose five important genes that link these diseases. This could provide a coherent basis for further research in this field.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Cytoscape: a software environment for integrated models of biomolecular interaction networks.

          Cytoscape is an open source software project for integrating biomolecular interaction networks with high-throughput expression data and other molecular states into a unified conceptual framework. Although applicable to any system of molecular components and interactions, Cytoscape is most powerful when used in conjunction with large databases of protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans and model organisms. Cytoscape's software Core provides basic functionality to layout and query the network; to visually integrate the network with expression profiles, phenotypes, and other molecular states; and to link the network to databases of functional annotations. The Core is extensible through a straightforward plug-in architecture, allowing rapid development of additional computational analyses and features. Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets

            Abstract Proteins and their functional interactions form the backbone of the cellular machinery. Their connectivity network needs to be considered for the full understanding of biological phenomena, but the available information on protein–protein associations is incomplete and exhibits varying levels of annotation granularity and reliability. The STRING database aims to collect, score and integrate all publicly available sources of protein–protein interaction information, and to complement these with computational predictions. Its goal is to achieve a comprehensive and objective global network, including direct (physical) as well as indirect (functional) interactions. The latest version of STRING (11.0) more than doubles the number of organisms it covers, to 5090. The most important new feature is an option to upload entire, genome-wide datasets as input, allowing users to visualize subsets as interaction networks and to perform gene-set enrichment analysis on the entire input. For the enrichment analysis, STRING implements well-known classification systems such as Gene Ontology and KEGG, but also offers additional, new classification systems based on high-throughput text-mining as well as on a hierarchical clustering of the association network itself. The STRING resource is available online at https://string-db.org/.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis.

              (1993)
                Bookmark

                Author and article information

                Journal
                romm
                Revista de Osteoporosis y Metabolismo Mineral
                Rev Osteoporos Metab Miner
                Sociedad Española de Investigaciones Óseas y Metabolismo Mineral (Madrid, Madrid, Spain )
                1889-836X
                2173-2345
                December 2021
                : 13
                : 4
                : 130-136
                Affiliations
                [01] Granada orgnameInstituto de Investigación Biosanitaria de Granada España
                [02] Granada orgnameHospital Clínico Universitario San Cecilio orgdiv1Unidad de Endocrinología y Nutrición España
                [04] Granada Andalucía orgnameUniversidad de Granada orgdiv1Departamento de Medicina Spain
                [03] Madrid orgnameCIBERFES orgdiv1Instituto de Salud Carlos III España
                Article
                S1889-836X2021000400005 S1889-836X(21)01300400005
                10.4321/s1889-836x2021000300005
                e896fdce-cb50-48dc-b2bb-92c19c5eb15a

                This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 International License.

                History
                : 08 September 2021
                : 24 June 2021
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 49, Pages: 7
                Product

                SciELO Spain

                Categories
                Originales

                bioinformática,biomarcadores,enfermedad pulmonar,contaminación atmosférica,calidad del aire,osteoporosis,bioinformatics,biomarkers,lung disease,air pollution,air quality

                Comments

                Comment on this article