19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Scaffolds for Growth Factor Delivery as Applied to Bone Tissue Engineering

      , , ,
      International Journal of Polymer Science
      Hindawi Limited

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There remains a substantial shortfall in the treatment of severe skeletal injuries. The current gold standard of autologous bone grafting from the same patient has many undesirable side effects associated such as donor site morbidity. Tissue engineering seeks to offer a solution to this problem. The primary requirements for tissue-engineered scaffolds have already been well established, and many materials, such as polyesters, present themselves as potential candidates for bone defects; they have comparable structural features, but they often lack the required osteoconductivity to promote adequate bone regeneration. By combining these materials with biological growth factors, which promote the infiltration of cells into the scaffold as well as the differentiation into the specific cell and tissue type, it is possible to increase the formation of new bone. However due to the cost and potential complications associated with growth factors, controlling the rate of release is an important design consideration when developing new bone tissue engineering strategies. This paper will cover recent research in the area of encapsulation and release of growth factors within a variety of different polymeric scaffolds.

          Related collections

          Most cited references134

          • Record: found
          • Abstract: found
          • Article: not found

          A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned.

          Increasingly, reports of frequent and occasionally catastrophic complications associated with use of recombinant human bone morphogenetic protein-2 (rhBMP-2) in spinal fusion surgeries are being published. In the original peer review, industry-sponsored publications describing the use of rhBMP-2 in spinal fusion, adverse events of these types and frequency were either not reported at all or not reported to be associated with rhBMP-2 use. Some authors and investigators have suggested that these discrepancies were related to inadequate peer review and editorial oversight. To compare the conclusions regarding the safety and related efficacy published in the original rhBMP-2 industry-sponsored trials with subsequently available Food and Drug Administration (FDA) data summaries, follow-up publications, and administrative and organizational databases. Systematic review. Results and conclusions from original industry-sponsored rhBMP-2 publications regarding safety and related efficacy were compared with available FDA data summaries, follow-up publications, and administrative and organizational database analyses. There were 13 original industry-sponsored rhBMP-2 publications regarding safety and efficacy, including reports and analyses of 780 patients receiving rhBMP-2 within prospective controlled study protocols. No rhBMP-2-associated adverse events (0%) were reported in any of these studies (99% confidence interval of adverse event rate <0.5%). The study designs of the industry-sponsored rhBMP-2 trials for use in posterolateral fusions and posterior lateral interbody fusion were found to have potential methodological bias against the control group. The reported morbidity of iliac crest donor site pain was also found to have serious potential design bias. Comparative review of FDA documents and subsequent publications revealed originally unpublished adverse events and internal inconsistencies. From this review, we suggest an estimate of adverse events associated with rhBMP-2 use in spine fusion ranging from 10% to 50% depending on approach. Anterior cervical fusion with rhBMP-2 has an estimated 40% greater risk of adverse events with rhBMP-2 in the early postoperative period, including life-threatening events. After anterior interbody lumbar fusion rates of implant displacement, subsidence, infection, urogenital events, and retrograde ejaculation were higher after using rhBMP-2 than controls. Posterior lumbar interbody fusion use was associated with radiculitis, ectopic bone formation, osteolysis, and poorer global outcomes. In posterolateral fusions, the risk of adverse effects associated with rhBMP-2 use was equivalent to or greater than that of iliac crest bone graft harvesting, and 15% to 20% of subjects reported early back pain and leg pain adverse events; higher doses of rhBMP-2 were also associated with a greater apparent risk of new malignancy. Level I and Level II evidence from original FDA summaries, original published data, and subsequent studies suggest possible study design bias in the original trials, as well as a clear increased risk of complications and adverse events to patients receiving rhBMP-2 in spinal fusion. This risk of adverse events associated with rhBMP-2 is 10 to 50 times the original estimates reported in the industry-sponsored peer-reviewed publications. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage [published erratum appears in J Cell Biol 1995 Feb;128(4):following 713]

            The implantation of bone morphogenetic protein (BMP) into muscular tissues induces ectopic bone formation at the site of implantation. To investigate the mechanism underlying this process, we examined whether recombinant bone morphogenetic protein-2 (BMP-2) converts the differentiation pathway of the clonal myoblastic cell line, C2C12, into that of osteoblast lineage. Incubating the cells with 300 ng/ml of BMP- 2 for 6 d almost completely inhibited the formation of the multinucleated myotubes expressing troponin T and myosin heavy chain, and induced the appearance of numerous alkaline phosphatase (ALP)- positive cells. BMP-2 dose dependently induced ALP activity, parathyroid hormone (PTH)-dependent 3',5'-cAMP production, and osteocalcin production at concentrations above 100 ng/ml. The concentration of BMP-2 required to induce these osteoblastic phenotypes was the same as that required to almost completely inhibit myotube formation. Incubating primary muscle cells with 300 ng/ml of BMP-2 for 6 d also inhibited myotube formation, whereas induced ALP activity and osteocalcin production. Incubation with 300 ng/ml of BMP-2 suppressed the expression of mRNA for muscle creatine kinase within 6 h, whereas it induced mRNA expression for ALP, PTH/PTH-related protein (PTHrP) receptors, and osteocalcin within 24-48 h. BMP-2 completely inhibited the expression of myogenin mRNA by day 3. By day 3, BMP-2 also inhibited the expression of MyoD mRNA, but it was transiently stimulated 12 h after exposure to BMP-2. Expression of Id-1 mRNA was greatly stimulated by BMP-2. When C2C12 cells pretreated with BMP-2 for 6 d were transferred to a colony assay system in the absence of BMP-2, more than 84% of the colonies generated became troponin T-positive and ALP activity disappeared. TGF-beta 1 also inhibited myotube formation in C2C12 cells, and suppressed the expression of myogenin and MyoD mRNAs without inducing that of Id-1 mRNA. However, no osteoblastic phenotype was induced by TGF-beta 1 in C2C12 cells. TGF-beta 1 potentiated the inhibitory effect of BMP-2 on myotube formation, whereas TGF-beta 1 reduced ALP activity and osteocalcin production induced by BMP-2 in C2C12 cells. These results indicate that BMP-2 specifically converts the differentiation pathway of C2C12 myoblasts into that of osteoblast lineage cells, but that the conversion is not heritable.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymeric system for dual growth factor delivery.

              The development of tissues and organs is typically driven by the action of a number of growth factors. However, efforts to regenerate tissues (e.g., bone, blood vessels) typically rely on the delivery of single factors, and this may partially explain the limited clinical utility of many current approaches. One constraint on delivering appropriate combinations of factors is a lack of delivery vehicles that allow for a localized and controlled delivery of more than a single factor. We report a new polymeric system that allows for the tissue-specific delivery of two or more growth factors, with controlled dose and rate of delivery. The utility of this system was investigated in the context of therapeutic angiogenesis. We now demonstrate that dual delivery of vascular endothelial growth factor (VEGF)-165 and platelet-derived growth factor (PDGF)-BB, each with distinct kinetics, from a single, structural polymer scaffold results in the rapid formation of a mature vascular network. This is the first report of a vehicle capable of delivery of multiple angiogenic factors with distinct kinetics, and these results clearly indicate the importance of multiple growth factor action in tissue regeneration and engineering.
                Bookmark

                Author and article information

                Journal
                International Journal of Polymer Science
                International Journal of Polymer Science
                Hindawi Limited
                1687-9422
                1687-9430
                2012
                2012
                : 2012
                :
                : 1-25
                Article
                10.1155/2012/174942
                e899f6bc-e871-4f1b-aefa-cf3d722dd3c4
                © 2012

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article