13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exosomes as a Potential Tool for Supporting Canine Oocyte Development

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Simple Summary

          To date, extracellular vesicles, including exosomes, have markedly gained attention in scientific research because of their physiological homogeneity as well as stability for transporting regulatory molecules to recipient cells. Recently, it has been shown that exosomes impact gametes and embryo development in several mammalian species; however, there is still scant information on the physiological effects of exosomes on the canine reproduction system. In this regard, we elucidate the possible roles of exosomes involvement in oviduct and cumulus-oocyte complexes mutual communications and how oviduct regulates their development via molecular signaling pathways.

          Abstract

          The canine oviduct is a unique reproductive organ where the ovulated immature oocytes complete their maturation, while the other mammals ovulate matured gametes. Due to their peculiar reproductive characteristics, the in vitro maturation of dog oocytes is still not wellestablished compared with other mammals. Investigations of the microenvironment conditions in the oviductal canal are required to establish a reliable in vitro maturation system in the dog. Previous studies have suggested that the oviduct and its derivatives play a key role in improving fertilization as well as embryo development. In particular, the biological function of oviduct-derived exosomes on sperm and early embryo development has been investigated in porcine, bovine, and murine species. However, the information about their functions on canine cumulus-oocyte complexes is still elusive. Recent canine reproductive studies demonstrated how oviduct-derived extracellular vesicles such as microvesicles and exosomes interact with oocyte-cumulus complexes and how they can play roles in regulating canine cumulus/oocyte communications. In this review, we summarize the physiological characteristics of canine oviduct-derived exosomes and their potential effects on cumulus cells development as well as oocyte in vitro maturation via molecular signaling pathways.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: found
          • Article: not found

          MicroRNAs: target recognition and regulatory functions.

          MicroRNAs (miRNAs) are endogenous approximately 23 nt RNAs that play important gene-regulatory roles in animals and plants by pairing to the mRNAs of protein-coding genes to direct their posttranscriptional repression. This review outlines the current understanding of miRNA target recognition in animals and discusses the widespread impact of miRNAs on both the expression and evolution of protein-coding genes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Extracellular vesicles: Exosomes, microvesicles, and friends

            Cells release into the extracellular environment diverse types of membrane vesicles of endosomal and plasma membrane origin called exosomes and microvesicles, respectively. These extracellular vesicles (EVs) represent an important mode of intercellular communication by serving as vehicles for transfer between cells of membrane and cytosolic proteins, lipids, and RNA. Deficiencies in our knowledge of the molecular mechanisms for EV formation and lack of methods to interfere with the packaging of cargo or with vesicle release, however, still hamper identification of their physiological relevance in vivo. In this review, we focus on the characterization of EVs and on currently proposed mechanisms for their formation, targeting, and function.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Exosomes: composition, biogenesis and function

                Bookmark

                Author and article information

                Journal
                Animals (Basel)
                Animals (Basel)
                animals
                Animals : an Open Access Journal from MDPI
                MDPI
                2076-2615
                27 October 2020
                November 2020
                : 10
                : 11
                : 1971
                Affiliations
                [1 ]Center for Reproductive Sciences, Department of Obstetrics and Gynecology, University of California San Francisco, San Francisco, CA 94143, USA
                [2 ]Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 44511, Saudi Arabia; isaadeldin@ 123456ksu.edu.sa
                [3 ]Department of Comparative Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
                Author notes
                [* ]Correspondence: seokhee.lee@ 123456ucsf.edu
                [†]

                These authors contributed equally to this work.

                Author information
                https://orcid.org/0000-0002-7633-730X
                Article
                animals-10-01971
                10.3390/ani10111971
                7693116
                33121043
                e89a611f-4f7e-4ef0-9061-cf571381778f
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 September 2020
                : 25 October 2020
                Categories
                Review

                oviduct,dog,exosomes,extracellular vesicles,oocytes development

                Comments

                Comment on this article