43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Neanderthal cranial ontogeny and its implications for late hominid diversity.

      Nature
      Adolescent, Adult, Animals, Biological Evolution, Cephalometry, Child, Child, Preschool, Fossils, Genetic Variation, Hominidae, anatomy & histology, classification, genetics, growth & development, Humans, Mandible, Skull

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Homo neanderthalensis has a unique combination of craniofacial features that are distinct from fossil and extant 'anatomically modern' Homo sapiens (modern humans). Morphological evidence, direct isotopic dates and fossil mitochondrial DNA from three Neanderthals indicate that the Neanderthals were a separate evolutionary lineage for at least 500,000 yr. However, it is unknown when and how Neanderthal craniofacial autapomorphies (unique, derived characters) emerged during ontogeny. Here we use computerized fossil reconstruction and geometric morphometrics to show that characteristic differences in cranial and mandibular shape between Neanderthals and modern humans arose very early during development, possibly prenatally, and were maintained throughout postnatal ontogeny. Postnatal differences in cranial ontogeny between the two taxa are characterized primarily by heterochronic modifications of a common spatial pattern of development. Evidence for early ontogenetic divergence together with evolutionary stasis of taxon-specific patterns of ontogeny is consistent with separation of Neanderthals and modern humans at the species level.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular analysis of Neanderthal DNA from the northern Caucasus.

          The expansion of premodern humans into western and eastern Europe approximately 40,000 years before the present led to the eventual replacement of the Neanderthals by modern humans approximately 28,000 years ago. Here we report the second mitochondrial DNA (mtDNA) analysis of a Neanderthal, and the first such analysis on clearly dated Neanderthal remains. The specimen is from one of the eastern-most Neanderthal populations, recovered from Mezmaiskaya Cave in the northern Caucasus. Radiocarbon dating estimated the specimen to be approximately 29,000 years old and therefore from one of the latest living Neanderthals. The sequence shows 3.48% divergence from the Feldhofer Neanderthal. Phylogenetic analysis places the two Neanderthals from the Caucasus and western Germany together in a clade that is distinct from modern humans, suggesting that their mtDNA types have not contributed to the modern human mtDNA pool. Comparison with modern populations provides no evidence for the multiregional hypothesis of modern human evolution.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Basicranial influence on overall cranial shape.

            This study examines the extent to which the major dimensions of the cranial base (maximum length, maximum breadth, and flexion) interact with brain volume to influence major proportions of the neurocranium and face. A model is presented for developmental interactions that occur during ontogeny between the brain and the cranial base and neurocranium, and between the neurobasicranial complex (NBC) and the face. The model is tested using exocranial and radiographic measurements of adult crania sampled from five geographically and craniometrically diverse populations. The results indicate that while variations in the breadth, length and flexion of the cranial base are mutually independent, only the maximum breadth of the cranial base (POB) has significant effects on overall cranial proportions, largely through its interactions with brain volume which influence NBC breadth. These interactions also have a slight influence on facial shape because NBC width constrains facial width, and because narrow-faced individuals tend to have antero-posteriorly longer faces relative to facial breadth than wide-faced individuals. Finally, the model highlights how integration between the cranial base and the brain may help to account for the developmental basis of some morphological variations such as occipital bunning. Among modern humans, the degree of posterior projection of the occipital bone appears to be a consequence of having a large brain on a relatively narrow cranial base. Occipital buns in Neanderthals, who have wide cranial bases relative to endocranial volume, may not be entirely homologous with the morphology occasionally evident in Homo sapiens. Copyright 2000 Academic Press.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A view of Neandertal genetic diversity.

                Bookmark

                Author and article information

                Comments

                Comment on this article