26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent work has established that cerebral blood flow is regulated at a spatial scale that can be resolved by high field fMRI to show cortical columns in humans. While cortical columns represent a cluster of neurons with similar response properties (spanning from the pial surface to the white matter), important information regarding neuronal interactions and computational processes is also contained within a single column, distributed across the six cortical lamina. A basic understanding of underlying neuronal circuitry or computations may be revealed through investigations of the distribution of neural responses at different cortical depths. In this study, we used T 2-weighted imaging with 0.7 mm (isotropic) resolution to measure fMRI responses at different depths in the gray matter while human subjects observed images with either recognizable or scrambled (physically impossible) objects. Intact and scrambled images were partially occluded, resulting in clusters of activity distributed across primary visual cortex. A subset of the identified clusters of voxels showed a preference for scrambled objects over intact; in these clusters, the fMRI response in middle layers was stronger during the presentation of scrambled objects than during the presentation of intact objects. A second experiment, using stimuli targeted at either the magnocellular or the parvocellular visual pathway, shows that laminar profiles in response to parvocellular-targeted stimuli peak in more superficial layers. These findings provide new evidence for the differential sensitivity of high-field fMRI to modulations of the neural responses at different cortical depths.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          A quantitative map of the circuit of cat primary visual cortex.

          We developed a quantitative description of the circuits formed in cat area 17 by estimating the "weight" of the projections between different neuronal types. To achieve this, we made three-dimensional reconstructions of 39 single neurons and thalamic afferents labeled with horseradish peroxidase during intracellular recordings in vivo. These neurons served as representatives of the different types and provided the morphometrical data about the laminar distribution of the dendritic trees and synaptic boutons and the number of synapses formed by a given type of neuron. Extensive searches of the literature provided the estimates of numbers of the different neuronal types and their distribution across the cortical layers. Applying the simplification that synapses between different cell types are made in proportion to the boutons and dendrites that those cell types contribute to the neuropil in a given layer, we were able to estimate the probable source and number of synapses made between neurons in the six layers. The predicted synaptic maps were quantitatively close to the estimates derived from the experimental electron microscopic studies for the case of the main sources of excitatory and inhibitory input to the spiny stellate cells, which form a major target of layer 4 afferents. The map of the whole cortical circuit shows that there are very few "strong" but many "weak" excitatory projections, each of which may involve only a few percentage of the total complement of excitatory synapses of a single neuron.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The thalamus is more than just a relay.

            The lateral geniculate nucleus and pulvinar are examples of two different types of relay: the former is a first order relay, transmitting information from a subcortical source (retina), while the latter is mostly a higher order relay, transmitting information from layer 5 of one cortical area to another cortical area. First and higher order thalamic relays can also be recognized for much of the rest of thalamus, and most of thalamus seems to be comprised of higher order relays. Higher order relays seem especially important to general corticocortical communication, and this challenges and extends the conventional view that such communication is based on direct corticocortical connections.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Laminar analysis of 7T BOLD using an imposed spatial activation pattern in human V1.

              With sufficient image encoding, high-resolution fMRI studies are limited by the biological point-spread of the hemodynamic signal. The extent of this spread is determined by the local vascular distribution and by the spatial specificity of blood flow regulation, as well as by measurement parameters that (i) alter the relative sensitivity of the acquisition to activation-induced hemodynamic changes and (ii) determine the image contrast as a function of vessel size. In particular, large draining vessels on the cortical surface are a major contributor to both the BOLD signal change and to the spatial bias of the BOLD activation away from the site of neuronal activity. In this work, we introduce a laminar surface-based analysis method and study the relationship between spatial localization and activation strength as a function of laminar depth by acquiring 1mm isotropic, single-shot EPI at 7 T and sampling the BOLD signal exclusively from the superficial, middle, or deep cortical laminae. We show that highly-accelerated EPI can limit image distortions to the point where a boundary-based registration algorithm accurately aligns the EPI data to the surface reconstruction. The spatial spread of the BOLD response tangential to the cortical surface was analyzed as a function of cortical depth using our surface-based analysis. Although sampling near the pial surface provided the highest signal strength, it also introduced the most spatial error. Thus, avoiding surface laminae improved spatial localization by about 40% at a cost of 36% in z-statistic, implying that optimal spatial resolution in functional imaging of the cortex can be achieved using anatomically-informed spatial sampling to avoid large pial vessels. Copyright 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2012
                20 March 2012
                : 7
                : 3
                : e32536
                Affiliations
                [1 ]Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
                [2 ]Department of Psychology, University of Minnesota, Minneapolis, Minnesota, United States of America
                [3 ]Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, United States of America
                [4 ]Advanced MRI Technologies, Sebastopol, California, United States of America
                Cuban Neuroscience Center, Cuba
                Author notes

                Conceived and designed the experiments: CAO EY NH. Performed the experiments: CAO EY PZ SH. Analyzed the data: CAO EY. Contributed reagents/materials/analysis tools: DF KU EY PZ SH. Wrote the paper: CAO NH DF KU EY.

                Article
                PONE-D-11-15887
                10.1371/journal.pone.0032536
                3308958
                22448223
                e8c061d6-7b92-4e8b-9db4-45dd8eecdd5e
                Olman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 16 August 2011
                : 31 January 2012
                Page count
                Pages: 9
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Neuroscience
                Neuroimaging
                Medicine
                Anatomy and Physiology
                Neurological System
                Mental Health
                Psychology
                Neurology
                Social and Behavioral Sciences
                Psychology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article