21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification and functional characterization of the BAG protein family in Arabidopsis thaliana.

      The Journal of Biological Chemistry
      Amino Acid Sequence, Animals, Apoptosis Regulatory Proteins, analysis, chemistry, genetics, Arabidopsis, metabolism, Evolution, Molecular, Genome, Plant, Models, Molecular, Molecular Sequence Data, Plant Proteins, Proto-Oncogene Proteins c-bcl-2, Sequence Alignment

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The genes that control mammalian programmed cell death are conserved across wide evolutionary distances. Although plant cells can undergo apoptosis-like cell death, plant homologs of mammalian regulators of apoptosis have, in general, not been found. This is in part due to the lack of primary sequence conservation between animal and putative plant regulators of apoptosis. Thus, alternative approaches beyond sequence similarities are required to find functional plant homologs of apoptosis regulators. Here, we present the results of using advanced bioinformatic tools to uncover the Arabidopsis family of BAG proteins. The mammalian BAG (Bcl-2-associated athanogene) proteins are a family of chaperone regulators that modulate a number of diverse processes ranging from proliferation to growth arrest and cell death. Such proteins are distinguished by a conserved BAG domain that directly interacts with Hsp70 and Hsc70 proteins to regulate their activity. Our searches of the Arabidopsis thaliana genome sequence revealed seven homologs of the BAG protein family. We further show that plant BAG family members are also multifunctional and remarkably similar to their animal counterparts, as they regulate apoptosis-like processes ranging from pathogen attack to abiotic stress and development.

          Related collections

          Author and article information

          Comments

          Comment on this article