+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Extracellular hemoglobin - mediator of inflammation and cell death in the choroid plexus following preterm intraventricular hemorrhage

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Intraventricular hemorrhage (IVH) with post-hemorrhagic ventricular dilatation (PHVD) is a major cause of neurodevelopmental impairment and mortality in preterm infants. The mechanisms leading to PHVD and brain damage remain largely unknown. The choroid plexus and the ependyma, which constitute an essential part of the blood-brain barrier (BBB), are the first structures to encounter the damaging effects of extravasated blood. The breakdown of the BBB is a critical upstream event leading to brain damage following IVH. In this study we investigated the impact of hemorrhage and hemoglobin (Hb) metabolites on the choroid plexus epithelium.


          Using a preterm rabbit pup model of IVH, the structural and functional integrity, cellular, inflammatory and oxidative response of the choroid plexus, at 24 and 72 hours following IVH + PHVD, were investigated. In order to further characterize cellular and molecular mechanisms, primary human choroid plexus epithelial cells were exposed to cerebrospinal fluid (CSF) from preterm infants with IVH as well as to Hb-metabolites. Finally, the blocking effects of the Hb-scavenger haptoglobin (Hp) were investigated both in vivo and in vitro.


          Following IVH + PHVD, an up-regulation of mRNA for the receptor-related genes TLR-4, IL1R1, FAS, the transcription factor NF-Κβ and for the pro-inflammatory and chemotactic effector molecules, IL-1β, TNFα, MCP-1, IL-8, and IL-6 was observed in the choroid plexus at 24 and 72 hours. This was associated with structural disintegration, caspase activation and cell death in the choroid plexus epithelium. In vitro characterization of choroid plexus epithelial cells, following exposure to hemorrhagic CSF and to the Hb-metabolites metHb and heme, displayed apoptotic and necrotic cell death and an up-regulation of receptor-related and inflammatory effector molecules similar to that observed in vivo following IVH + PHVD. Intraventricular injection of the Hb-scavenger Hp in vivo and co-incubation with Hp in vitro reversed or reduced the cellular activation, inflammatory response, structural damage and cell death .


          Hb-metabolites are important causal initiators of cell death following IVH and removal or scavenging of Hb-metabolites may present an efficient means to reduce the damage to the immature brain following IVH.

          Related collections

          Most cited references 29

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of heme as activator of Toll-like receptor 4.

          Heme is an ancient and ubiquitous molecule present in organisms of all kingdoms, composed of an atom of iron linked to four ligand groups of porphyrin. A high amount of free heme, a potential amplifier of the inflammatory response, is a characteristic feature of diseases with increased hemolysis or extensive cell damage. Here we demonstrate that heme, but not its analogs/precursors, induced tumor necrosis factor-alpha (TNF-alpha) secretion by macrophages dependently on MyD88, TLR4, and CD14. The activation of TLR4 by heme is exquisitely strict, requiring its coordinated iron and the vinyl groups of the porphyrin ring. Signaling of heme through TLR4 depended on an interaction distinct from the one established between TLR4 and lipopolysaccharide (LPS) since anti-TLR4/MD2 antibody or a lipid A antagonist inhibited LPS-induced TNF-alpha secretion but not heme activity. Conversely, protoporphyrin IX antagonized heme without affecting LPS-induced activation. Moreover, heme induced TNF-alpha and keratinocyte chemokine but was ineffective to induce interleukin-6, interleukin-12, and interferon-inducible protein-10 secretion or co-stimulatory molecule expression. These findings support the concept that the broad ligand specificity of TLR4 and the different activation profiles might in part reside in its ability to recognize different ligands in different binding sites. Finally, heme induced oxidative burst, neutrophil recruitment, and heme oxygenase-1 expression independently of TLR4. Thus, our results presented here reveal a previous unrecognized role of heme as an extracellular signaling molecule that affects the innate immune response through a receptor-mediated mechanism.
            • Record: found
            • Abstract: found
            • Article: not found

            Haptoglobin: basic and clinical aspects.

            Haptoglobin is an abundant hemoglobin-binding protein present in the plasma. The function of haptoglobin is primarily to determine the fate of hemoglobin released from red blood cells after either intravascular or extravascular hemolysis. There are two common alleles at the Hp genetic locus denoted 1 and 2. There are functional differences between the Hp 1 and Hp 2 protein products in protecting against hemoglobin-driven oxidative stress that appear to have important clinical significance. In particular, individuals with the Hp 2-2 genotype and diabetes mellitus appear to be at significantly higher risk of microvascular and macrovascular complications. A pharmacogenomic strategy of administering high dose antioxidants specifically to Hp 2-2 DM individuals may be clinically effective.
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury

              Intracerebral hemorrhage (ICH) is a common type of fatal stroke, accounting for about 15% to 20% of all strokes. Hemorrhagic strokes are associated with high mortality and morbidity, and increasing evidence shows that innate immune responses and inflammatory injury play a critical role in ICH-induced neurological deficits. However, the signaling pathways involved in ICH-induced inflammatory responses remain elusive. Toll-like receptor 4 (TLR4) belongs to a large family of pattern recognition receptors that play a key role in innate immunity and inflammatory responses. In this review, we summarize recent findings concerning the involvement of TLR4 signaling in ICH-induced inflammation and brain injury. We discuss the key mechanisms associated with TLR4 signaling in ICH and explore the potential for therapeutic intervention by targeting TLR4 signaling.

                Author and article information

                J Neuroinflammation
                J Neuroinflammation
                Journal of Neuroinflammation
                BioMed Central (London )
                2 December 2014
                2 December 2014
                : 11
                : 1
                [ ]Department of Pediatrics, Lund University, Lund, S-221 84 Sweden
                [ ]Division of Infection Medicine, Lund University, Lund, S-221 84 Sweden
                [ ]Department of Electrical Measurements, Lund University, Lund, S-221 84 Sweden
                [ ]Department of Obstetrics and Gynaecology, Lund University, Lund, S-221 84 Sweden
                © Gram et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated.

                Custom metadata
                © The Author(s) 2014


                Comment on this article