Blog
About

  • Record: found
  • Abstract: found
  • Article: found
Is Open Access

A Study on the Effect of Neurogenesis and Regulation of GSK3β/PP2A Expression in Acupuncture Treatment of Neural Functional Damage Caused by Focal Ischemia in MCAO Rats

Read this article at

Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      170 SD rats were randomly divided to five groups. Rats in model group, no-acupuncture group, and acupuncture group were subjected to MCAO surgery. Acupuncture group received 3 consecutive acupuncture treatments at a parameter that deep in 2 mm towards apex nasi and thrust/lifted at 3 times per second for 1 minute, while model group and no-acupuncture group were no-intervention control groups. Serious neural functional damage and sharp decrease of cerebral blood flow, obvious infarction volume, increased nestin mRNA expression, and immunopositive cells population (nestin+, BrdU+ and nestin/BrdU+) were found in MCAO rats which had not been observed in normal group and sham-operated group. However, the damage was attenuated by rat's “self-healing” capacity 3 days after MCAO. And the “self-healing” capacity can be strengthen by acupuncture treatment through increasing cerebral blood flow, neurogenesis, and regulation of gene transcription or GSK-3β and PP2A expression. In conclusion, the present study indicates that the underlying mechanism of acupuncture treatment on neural functional damage caused by focal ischemia injury is a multiple interaction which may involve improved cerebral blood supply, neurogenesis, and regulation of gene transcription or GSK-3β and PP2A expression in MCAO rats.

      Related collections

      Most cited references 43

      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

       K Livak,  T Schmittgen (2001)
      The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
        Bookmark
        • Record: found
        • Abstract: found
        • Article: not found

        Neurogenesis in the adult human hippocampus.

        The genesis of new cells, including neurons, in the adult human brain has not yet been demonstrated. This study was undertaken to investigate whether neurogenesis occurs in the adult human brain, in regions previously identified as neurogenic in adult rodents and monkeys. Human brain tissue was obtained postmortem from patients who had been treated with the thymidine analog, bromodeoxyuridine (BrdU), that labels DNA during the S phase. Using immunofluorescent labeling for BrdU and for one of the neuronal markers, NeuN, calbindin or neuron specific enolase (NSE), we demonstrate that new neurons, as defined by these markers, are generated from dividing progenitor cells in the dentate gyrus of adult humans. Our results further indicate that the human hippocampus retains its ability to generate neurons throughout life.
          Bookmark
          • Record: found
          • Abstract: found
          • Article: not found

          Reversible middle cerebral artery occlusion without craniectomy in rats.

          To develop a simple, relatively noninvasive small-animal model of reversible regional cerebral ischemia, we tested various methods of inducing infarction in the territory of the right middle cerebral artery (MCA) by extracranial vascular occlusion in rats. In preliminary studies, 60 rats were anesthetized with ketamine and different combinations of vessels were occluded; blood pressure and arterial blood gases were monitored. Neurologic deficit, mortality rate, gross pathology, and in some instances, electroencephalogram and histochemical staining results were evaluated in all surviving rats. The principal procedure consisted of introducing a 4-0 nylon intraluminal suture into the cervical internal carotid artery (ICA) and advancing it intracranially to block blood flow into the MCA; collateral blood flow was reduced by interrupting all branches of the external carotid artery (ECA) and all extracranial branches of the ICA. In some groups of rats, bilateral vertebral or contralateral carotid artery occlusion was also performed. India ink perfusion studies in 20 rats documented blockage of MCA blood flow in 14 rats subjected to permanent occlusion and the restoration of blood flow to the MCA territory in six rats after withdrawal of the suture from the ICA. The best method of MCA occlusion was then selected for further confirmatory studies, including histologic examination, in five additional groups of rats anesthetized with halothane. Seven of eight rats that underwent permanent occlusion of the MCA had resolving moderately severe neurologic deficits (Grade 2 of 4) and unilateral infarcts averaging 37.6 +/- 5.5% of the coronal sectional area at 72 hours after the onset of occlusion.(ABSTRACT TRUNCATED AT 250 WORDS)
            Bookmark

            Author and article information

            Affiliations
            1Postgraduate Department of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
            2The Acupuncture & Moxibustion Institute, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
            3The Third-Level Acupuncture Dose-Effect Laboratory of the State Administration of Traditional Chinese Medicine, Tianjin 300193, China
            4Tianjin Key Laboratory of Acupuncture & Moxibustion Science, Tianjin 300193, China
            5Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
            6Department of Acupuncture and Moxibustion, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
            Author notes

            Academic Editor: Yi-Hung Chen

            Journal
            Evid Based Complement Alternat Med
            Evid Based Complement Alternat Med
            ECAM
            Evidence-based Complementary and Alternative Medicine : eCAM
            Hindawi Publishing Corporation
            1741-427X
            1741-4288
            2014
            10 July 2014
            10 July 2014
            : 2014
            4120913
            10.1155/2014/962343
            Copyright © 2014 Ding Luo et al.

            This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

            Categories
            Research Article

            Complementary & Alternative medicine

            Comments

            Comment on this article