40
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Nanoparticle inhalation augments particle-dependent systemic microvascular dysfunction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We have shown that pulmonary exposure to fine particulate matter (PM) impairs endothelium dependent dilation in systemic arterioles. Ultrafine PM has been suggested to be inherently more toxic by virtue of its increased surface area. The purpose of this study was to determine if ultrafine PM (or nanoparticle) inhalation produces greater microvascular dysfunction than fine PM. Rats were exposed to fine or ultrafine TiO 2 aerosols (primary particle diameters of ~1 μm and ~21 nm, respectively) at concentrations which do not alter bronchoalveolar lavage markers of pulmonary inflammation or lung damage.

          Results

          By histopathologic evaluation, no significant inflammatory changes were seen in the lung. However, particle-containing macrophages were frequently seen in intimate contact with the alveolar wall. The spinotrapezius muscle was prepared for in vivo microscopy 24 hours after inhalation exposures. Intraluminal infusion of the Ca 2+ ionophore A23187 was used to evaluate endothelium-dependent arteriolar dilation. In control rats, A23187 infusion produced dose-dependent arteriolar dilations. In rats exposed to fine TiO 2, A23187 infusion elicited vasodilations that were blunted in proportion to pulmonary particle deposition. In rats exposed to ultrafine TiO 2, A23187 infusion produced arteriolar constrictions or significantly impaired vasodilator responses as compared to the responses observed in control rats or those exposed to a similar pulmonary load of fine particles.

          Conclusion

          These observations suggest that at equivalent pulmonary loads, as compared to fine TiO 2, ultrafine TiO 2 inhalation produces greater remote microvascular dysfunction.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Safe handling of nanotechnology.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease.

            Exposure to air pollution from traffic is associated with adverse cardiovascular events. The mechanisms for this association are unknown. We conducted a controlled exposure to dilute diesel exhaust in patients with stable coronary heart disease to determine the direct effect of air pollution on myocardial, vascular, and fibrinolytic function. In a double-blind, randomized, crossover study, 20 men with prior myocardial infarction were exposed, in two separate sessions, to dilute diesel exhaust (300 mug per cubic meter) or filtered air for 1 hour during periods of rest and moderate exercise in a controlled-exposure facility. During the exposure, myocardial ischemia was quantified by ST-segment analysis using continuous 12-lead electrocardiography. Six hours after exposure, vasomotor and fibrinolytic function were assessed by means of intraarterial agonist infusions. During both exposure sessions, the heart rate increased with exercise (P<0.001); the increase was similar during exposure to diesel exhaust and exposure to filtered air (P=0.67). Exercise-induced ST-segment depression was present in all patients, but there was a greater increase in the ischemic burden during exposure to diesel exhaust (-22+/-4 vs. -8+/-6 millivolt seconds, P<0.001). Exposure to diesel exhaust did not aggravate preexisting vasomotor dysfunction, but it did reduce the acute release of endothelial tissue plasminogen activator (P=0.009; 35% decrease in the area under the curve). Brief exposure to dilute diesel exhaust promotes myocardial ischemia and inhibits endogenous fibrinolytic capacity in men with stable coronary heart disease. Our findings point to ischemic and thrombotic mechanisms that may explain in part the observation that exposure to combustion-derived air pollution is associated with adverse cardiovascular events. (ClinicalTrials.gov number, NCT00437138 [ClinicalTrials.gov].). Copyright 2007 Massachusetts Medical Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inhalation of fine particulate air pollution and ozone causes acute arterial vasoconstriction in healthy adults.

              Fine particulate air pollution and ozone are associated with increased cardiovascular events. To help explain the mechanism behind these observations, we investigated the effect of air pollution exposure on vascular function. Twenty-five healthy adults underwent a randomized, double-blind, crossover study comparing the vascular response to the 2-hour inhalation of approximately 150 microg/m(3) of concentrated ambient fine particles (CAP) plus ozone (120 ppb) versus the response to the inhalation of filtered air. High-resolution vascular ultrasonography was used to measure alterations in brachial artery diameter, endothelial-dependent flow-mediated dilatation (FMD) and endothelial-independent nitroglycerin-mediated dilatation (NMD). Exposure to CAP plus ozone caused a significant brachial artery vasoconstriction compared with filtered air inhalation (-0.09+/-0.15 mm versus +0.01+/-0.18 mm, P=0.03). There were no significant differences in FMD (+0.29+/-4.11% versus -0.03+/-6.63%, P=0.88), NMD (+3.87+/-5.43% versus +3.46+/-7.92%, P=0.83), or blood pressure responses between exposures. Short-term inhalation of fine particulate air pollution and ozone at concentrations that occur in the urban environment causes acute conduit artery vasoconstriction.
                Bookmark

                Author and article information

                Journal
                Part Fibre Toxicol
                Particle and Fibre Toxicology
                BioMed Central
                1743-8977
                2008
                12 February 2008
                : 5
                : 1
                Affiliations
                [1 ]Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
                [2 ]Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
                [3 ]Pathology and Physiology Research Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
                Article
                1743-8977-5-1
                10.1186/1743-8977-5-1
                2276228
                18269765
                e8e8f7c1-c2a1-49c4-afc4-66e44b0670d5
                Copyright © 2008 Nurkiewicz et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 November 2007
                : 12 February 2008
                Categories
                Research

                Toxicology
                Toxicology

                Comments

                Comment on this article