Blog
About

7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Dyscalculia and Typical Math Achievement Are Associated With Individual Differences in Number-Specific Executive Function

      1 , 1 , 1

      Child Development

      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 75

          • Record: found
          • Abstract: found
          • Article: not found

          Executive functioning as a predictor of children's mathematics ability: inhibition, switching, and working memory.

          Children's mathematical skills were considered in relation to executive functions. Using multiple measures--including the Wisconsin Card Sorting Task (WCST), dual-task performance, Stroop task, and counting span-it was found that mathematical ability was significantly correlated with all measures of executive functioning, with the exception of dual-task performance. Furthermore, regression analyses revealed that each executive function measure predicted unique variance in mathematics ability. These results are discussed in terms of a central executive with diverse functions (Shallice & Burgess, 1996) and with recent evidence from Miyake, et al. (2000) showing the unity and diversity among executive functions. It is proposed that the particular difficulties for children of lower mathematical ability are lack of inhibition and poor working memory, which result in problems with switching and evaluation of new strategies for dealing with a particular task. The practical and theoretical implications of these results are discussed, along with suggestions for task changes and longitudinal studies that would clarify theoretical and developmental issues related to executive functioning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The development of working memory in normally achieving and subtypes of learning disabled children.

            Working memory has been proposed as an important component of reading and arithmetic skills. The development of working memory was studied in normally achieving and subtypes of learning disabled children. The performance of reading disabled (RD), arithmetic disabled (ARITHD), and attentional deficit disordered (ADD) children, age 7-13, was compared to normal achievers (NA) on 2 working memory tasks, 1 involving sentences and the other involving counting. There was a significant growth of working memory as a function of age. In addition, the RD children had significantly lower scores on both tasks. The ARITHD children had significantly lower scores only on the Working Memory--Counting task, and the ADD group had scores similar to the normally achieving children except at the youngest age level in the Working Memory--Sentences task. Thus, a reading disability appears to involve a generalized deficit in working memory. Children with an arithmetic disability do not have a generalized language deficit but have a specific working memory deficit in relation to processing numerical information. As children with ADD did not have deficits in these tasks, working memory may not have significant attentional components. An important component of the development of reading and computational arithmetic skills appears to be the growth of working memory for language and numerical information.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dyscalculia: from brain to education.

              Recent research in cognitive and developmental neuroscience is providing a new approach to the understanding of dyscalculia that emphasizes a core deficit in understanding sets and their numerosities, which is fundamental to all aspects of elementary school mathematics. The neural bases of numerosity processing have been investigated in structural and functional neuroimaging studies of adults and children, and neural markers of its impairment in dyscalculia have been identified. New interventions to strengthen numerosity processing, including adaptive software, promise effective evidence-based education for dyscalculic learners.
                Bookmark

                Author and article information

                Journal
                Child Development
                Child Dev
                Wiley
                00093920
                December 31 2018
                Affiliations
                [1 ]Vanderbilt University
                Article
                10.1111/cdev.13194
                © 2018

                Comments

                Comment on this article