38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Association of improved air quality with lung development in children.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Air-pollution levels have been trending downward progressively over the past several decades in southern California, as a result of the implementation of air quality-control policies. We assessed whether long-term reductions in pollution were associated with improvements in respiratory health among children.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Fine-particulate air pollution and life expectancy in the United States.

          Exposure to fine-particulate air pollution has been associated with increased morbidity and mortality, suggesting that sustained reductions in pollution exposure should result in improved life expectancy. This study directly evaluated the changes in life expectancy associated with differential changes in fine particulate air pollution that occurred in the United States during the 1980s and 1990s. We compiled data on life expectancy, socioeconomic status, and demographic characteristics for 211 county units in the 51 U.S. metropolitan areas with matching data on fine-particulate air pollution for the late 1970s and early 1980s and the late 1990s and early 2000s. Regression models were used to estimate the association between reductions in pollution and changes in life expectancy, with adjustment for changes in socioeconomic and demographic variables and in proxy indicators for the prevalence of cigarette smoking. A decrease of 10 microg per cubic meter in the concentration of fine particulate matter was associated with an estimated increase in mean (+/-SE) life expectancy of 0.61+/-0.20 year (P=0.004). The estimated effect of reduced exposure to pollution on life expectancy was not highly sensitive to adjustment for changes in socioeconomic, demographic, or proxy variables for the prevalence of smoking or to the restriction of observations to relatively large counties. Reductions in air pollution accounted for as much as 15% of the overall increase in life expectancy in the study areas. A reduction in exposure to ambient fine-particulate air pollution contributed to significant and measurable improvements in life expectancy in the United States. 2009 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of exposure to traffic on lung development from 10 to 18 years of age: a cohort study.

            Whether local exposure to major roadways adversely affects lung-function growth during the period of rapid lung development that takes place between 10 and 18 years of age is unknown. This study investigated the association between residential exposure to traffic and 8-year lung-function growth. In this prospective study, 3677 children (mean age 10 years [SD 0.44]) participated from 12 southern California communities that represent a wide range in regional air quality. Children were followed up for 8 years, with yearly lung-function measurements recorded. For each child, we identified several indicators of residential exposure to traffic from large roads. Regression analysis was used to establish whether 8-year growth in lung function was associated with local traffic exposure, and whether local traffic effects were independent of regional air quality. Children who lived within 500 m of a freeway (motorway) had substantial deficits in 8-year growth of forced expiratory volume in 1 s (FEV(1), -81 mL, p=0.01 [95% CI -143 to -18]) and maximum midexpiratory flow rate (MMEF, -127 mL/s, p=0.03 [-243 to -11), compared with children who lived at least 1500 m from a freeway. Joint models showed that both local exposure to freeways and regional air pollution had detrimental, and independent, effects on lung-function growth. Pronounced deficits in attained lung function at age 18 years were recorded for those living within 500 m of a freeway, with mean percent-predicted 97.0% for FEV1 (p=0.013, relative to >1500 m [95% CI 94.6-99.4]) and 93.4% for MMEF (p=0.006 [95% CI 89.1-97.7]). Local exposure to traffic on a freeway has adverse effects on children's lung development, which are independent of regional air quality, and which could result in important deficits in attained lung function in later life.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Traffic, Susceptibility, and Childhood Asthma

              Results from studies of traffic and childhood asthma have been inconsistent, but there has been little systematic evaluation of susceptible subgroups. In this study, we examined the relationship of local traffic-related exposure and asthma and wheeze in southern California school children (5–7 years of age). Lifetime history of doctor-diagnosed asthma and prevalent asthma and wheeze were evaluated by questionnaire. Parental history of asthma and child’s history of allergic symptoms, sex, and early-life exposure (residence at the same home since 2 years of age) were examined as susceptibility factors. Residential exposure was assessed by proximity to a major road and by modeling exposure to local traffic-related pollutants. Residence within 75 m of a major road was associated with an increased risk of lifetime asthma [odds ratio (OR) = 1.29; 95% confidence interval (CI), 1.01–1.86], prevalent asthma (OR = 1.50; 95% CI, 1.16–1.95), and wheeze (OR = 1.40; 95% CI, 1.09–1.78). Susceptibility increased in long-term residents with no parental history of asthma for lifetime asthma (OR = 1.85; 95% CI, 1.11–3.09), prevalent asthma (OR = 2.46; 95% CI, 0.48–4.09), and recent wheeze (OR = 2.74; 95% CI, 1.71–4.39). The higher risk of asthma near a major road decreased to background rates at 150–200 m from the road. In children with a parental history of asthma and in children moving to the residence after 2 years of age, there was no increased risk associated with exposure. Effect of residential proximity to roadways was also larger in girls. A similar pattern of effects was observed with traffic-modeled exposure. These results indicate that residence near a major road is associated with asthma. The reason for larger effects in those with no parental history of asthma merits further investigation.
                Bookmark

                Author and article information

                Journal
                N. Engl. J. Med.
                The New England journal of medicine
                1533-4406
                0028-4793
                Mar 5 2015
                : 372
                : 10
                Affiliations
                [1 ] From the Department of Preventive Medicine, University of Southern California, Los Angeles (W.J.G., R.U., E.A., K.B., R.M., E.R., R.C., F.G.) and Sonoma Technologies, Petaluma (F.L.) - both in California.
                Article
                NIHMS677075
                10.1056/NEJMoa1414123
                25738666
                e9055786-4395-447c-ac8a-64e5d9462b9e
                History

                Comments

                Comment on this article