1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical Spin Hall Effect in Closed Elliptical Plasmonic Nanoslit with Noncircular Symmetry

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the optical spin Hall effect (OSHE) of the light field from a closed elliptical metallic curvilinear nanoslit instead of the usual truncated curvilinear nanoslit. By making use of the characteristic bright spots in the light field formed by the noncircular symmetry of the elliptical slit and by introducing a method to separate the incident spin component (ISC) and converted spin component (CSC) of the output field, the OSHE manifested in the spot shifts in the CSC was more clearly observable and easily measurable. The slope of the elliptical slit, which was inverse along the principal axes, provided a geometric phase gradient to yield the opposite shifts of the characteristic spots in centrosymmetry, with a double shift achieved between the spots. Regarding the mechanism of this phenomenon, the flip of the spin angular momentum (SAM) of CSC gave rise to an extrinsic orbital angular momentum corresponding to the shifts of the wavelet profiles of slit elements in the same rotational direction to satisfy the conservation law. The analytical calculation and simulation of finite-difference time domain were performed for both the slit element and the whole slit ellipse, and the evolutions of the spot shifts as well as the underlying OSHE with the parameters of the ellipse were achieved. Experimental demonstrations were conducted and had consistent results. This study could be of great significance for subjects related to the applications of the OSHE.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Observation of the spin hall effect of light via weak measurements.

          We have detected a spin-dependent displacement perpendicular to the refractive index gradient for photons passing through an air-glass interface. The effect is the photonic version of the spin Hall effect in electronic systems, indicating the universality of the effect for particles of different nature. Treating the effect as a weak measurement of the spin projection of the photons, we used a preselection and postselection technique on the spin state to enhance the original displacement by nearly four orders of magnitude, attaining sensitivity to displacements of approximately 1 angstrom. The spin Hall effect can be used for manipulating photonic angular momentum states, and the measurement technique holds promise for precision metrology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metasurface holograms reaching 80% efficiency.

            Surfaces covered by ultrathin plasmonic structures--so-called metasurfaces--have recently been shown to be capable of completely controlling the phase of light, representing a new paradigm for the design of innovative optical elements such as ultrathin flat lenses, directional couplers for surface plasmon polaritons and wave plate vortex beam generation. Among the various types of metasurfaces, geometric metasurfaces, which consist of an array of plasmonic nanorods with spatially varying orientations, have shown superior phase control due to the geometric nature of their phase profile. Metasurfaces have recently been used to make computer-generated holograms, but the hologram efficiency remained too low at visible wavelengths for practical purposes. Here, we report the design and realization of a geometric metasurface hologram reaching diffraction efficiencies of 80% at 825 nm and a broad bandwidth between 630 nm and 1,050 nm. The 16-level-phase computer-generated hologram demonstrated here combines the advantages of a geometric metasurface for the superior control of the phase profile and of reflectarrays for achieving high polarization conversion efficiency. Specifically, the design of the hologram integrates a ground metal plane with a geometric metasurface that enhances the conversion efficiency between the two circular polarization states, leading to high diffraction efficiency without complicating the fabrication process. Because of these advantages, our strategy could be viable for various practical holographic applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission

              Metasurfaces are planar structures that locally modify the polarization, phase and amplitude of light in reflection or transmission, thus enabling lithographically patterned flat optical components with functionalities controlled by design. Transmissive metasurfaces are especially important, as most optical systems used in practice operate in transmission. Several types of transmissive metasurface have been realized, but with either low transmission efficiencies or limited control over polarization and phase. Here, we show a metasurface platform based on high-contrast dielectric elliptical nanoposts that provides complete control of polarization and phase with subwavelength spatial resolution and an experimentally measured efficiency ranging from 72% to 97%, depending on the exact design. Such complete control enables the realization of most free-space transmissive optical elements such as lenses, phase plates, wave plates, polarizers, beamsplitters, as well as polarization-switchable phase holograms and arbitrary vector beam generators using the same metamaterial platform.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Nanomaterials (Basel)
                Nanomaterials (Basel)
                nanomaterials
                Nanomaterials
                MDPI
                2079-4991
                26 March 2021
                April 2021
                : 11
                : 4
                : 851
                Affiliations
                [1 ]College of Physics and Electronics, Shandong Normal University, Jinan 250014, China; bidud@ 123456126.com (X.R.); zengxiangyu0611@ 123456163.com (X.Z.); liuchunxiang@ 123456sdnu.edu.cn (C.L.); zhangruirui0268@ 123456163.com (R.Z.); ss_yghg@ 123456163.com (Y.Z.); zhanzijun1990@ 123456163.com (Z.Z.); kongqian0304@ 123456163.com (Q.K.); sunrui199812@ 123456163.com (R.S.)
                [2 ]School of Electronic and Information Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
                Author notes
                Article
                nanomaterials-11-00851
                10.3390/nano11040851
                8066872
                33810485
                e911cfe8-d54c-4cfe-ace6-20d0d06ea665
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 March 2021
                : 22 March 2021
                Categories
                Article

                surface plasmons,optical spin hall effect,geometric phases,phase gradient

                Comments

                Comment on this article